Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(1): 12-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229172

RESUMO

GI endoscopy is highly resource-intensive with a significant contribution to greenhouse gas (GHG) emissions and waste generation. Sustainable endoscopy in the context of climate change is now the focus of mainstream discussions between endoscopy providers, units and professional societies. In addition to broader global challenges, there are some specific measures relevant to endoscopy units and their practices, which could significantly reduce environmental impact. Awareness of these issues and guidance on practical interventions to mitigate the carbon footprint of GI endoscopy are lacking. In this consensus, we discuss practical measures to reduce the impact of endoscopy on the environment applicable to endoscopy units and practitioners. Adoption of these measures will facilitate and promote new practices and the evolution of a more sustainable specialty.


Assuntos
Gastroenterologia , Humanos , Consenso , Endoscopia Gastrointestinal
2.
J Nephrol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289296

RESUMO

BACKGROUND: Haemodialysis treatments generate greenhouse gas (GHG) emissions mainly as a result of the equipment, consumables and pharmaceuticals required. An internal audit demonstrated a 33% wastage of acid concentrate when using individual 5.0 L containers at a 1:44 dilution ratio. We therefore investigated whether changing the delivery system for acid concentrate would reduce wastage and any associated greenhouse gas emissions. METHODS: We calculated the difference for a 30-bed dialysis unit between receiving acid concentrate in single-use 5.0 L plastic containers versus bulk delivery for a central acid delivery system connected to the dialysis machines. Estimates of carbon dioxide equivalent (CO2e) emissions were made using the United Kingdom government database and other sources. RESULTS: A 30-station dialysis unit functioning at maximum capacity (3 shifts and 6 days/week), switching to bulk delivery and central acid delivery could realise an approximate total reduction of 33,841 kgCO2e/year; in reduced product wastage, saving 6192 kgCO2e, 5205 kgCO2e from fewer deliveries, and 22,444 kgCO2e saving from a reduction in packaging and waste generated, which equates approximately to a one tonne reduction in CO2e emissions per dialysis station/year. CONCLUSIONS: Switching from delivering acid concentrate in individual 5.0 L containers to a central acid delivery system can result in substantial reductions in CO2e emissions within a dialysis clinic. The emission savings from reducing the single-use plastic packaging greatly outweigh any gains from eliminating wastage of acid concentrate. Dialysis companies and clinicians should consider reviewing the design of current and future dialysis facilities and policies to determine whether reductions in CO2e emissions can be made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA