Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(17): 12526-12530, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594465

RESUMO

The pre-electrolysis of LiClO4 in acetonitrile in an undivided cell applying only "catalytic" amounts of current (e.g., 0.05 F) led to the formation of a strong acidic medium for the activation of benzylic ethers and acetals. The activated primary and secondary benzylic ethers and acetals could be converted with a range of carbon nucleophiles, such as allyl trimethylsilane, silyl enol ethers, and enol acetates, for the formation of new carbon-carbon bonds. A chemoselective reaction was observed when electron-deficient benzylic acetals were converted with allyl trimethylsilane to the monoallylated products, whereas an electron-rich benzylic acetal led to the double allylated product under activation of both ether groups.

2.
Chemistry ; 27(43): 11141-11149, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33938070

RESUMO

An electrochemical synthesis of organic polysulfides through sulfur insertion from elemental sulfur to disulfides or thiols is introduced. The highly economic, low-sensitive and low-priced reaction gives a mixture of polysulfides, whose distribution can be influenced by the addition of different amounts of carbon disulfide as co-solvent. To describe the variable distribution function of the polysulfides, a novel parameter, the "absorbance average sulfur amount in polysulfides" (SAP) was introduced and defined on the basis of the "number average molar mass" used in polymer chemistry. Various organic polysulfides were synthesized with variable volume fractions of carbon disulfide, and the yield of each polysulfide was determined by quantitative 13 C NMR. Moreover, by using two symmetrical disulfides or a disulfide and a thiol as starting materials, a mixture of symmetrical and asymmetrical polysulfides could be obtained.

3.
Chemistry ; 27(43): 11221-11225, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34048092

RESUMO

The transfer-hydrogenation as well as the regioselective and regiodivergent addition of H-D from regiospecific deuterated dihydroaromatic compounds to a variety of 1,1-di- and trisubstituted alkenes was realised with InBr3 in dichloro(m)ethane. In comparison with the previously reported BF3 ⋅Et2 O-catalysed process, electron-deficient aryl-substituents can be applied reliably and thereby several restrictions could be lifted, and new types of substrates could be transformed successfully in hydrodeuterogenation as well as deuterohydrogenation transfer-hydrogenation reactions.

4.
Chemistry ; 27(2): 605-608, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33270278

RESUMO

The synthesis of 1,3-oxazoles from symmetrical and unsymmetrical alkynes was realized by an iodonium cation-pool electrolysis of I2 in acetonitrile with a well-defined water content. Mechanistic investigations suggest that the alkyne reacts with the acetonitrile-stabilized I+ ions, followed by a Ritter-type reaction of the solvent to a nitrilium ion, which is then attacked by water. The ring closure to the 1,3-oxazoles released molecular iodine, which was visible by the naked eye. Also, some unsymmetrical internal alkynes were tested and a regioselective formation of a single isomer was determined by two-dimensional NMR experiments.

5.
Chemistry ; 27(69): 17341-17345, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34648232

RESUMO

The first example for the electrochemical cis-dichlorination of alkenes is presented. The reaction can be performed with little experimental effort by using phenylselenyl chloride as catalyst and tetrabutylammoniumchloride as supporting electrolyte, which also acts as nucleophilic reagent for the SN 2-type replacement of selenium versus chloride. Cyclic voltammetric measurements and control experiments revealed a dual role of phenylselenyl chloride in the reaction. Based on these results a reaction mechanism was postulated, where the key step of the process is the activation of a phenylselenyl chloride-alkene adduct by electrochemically generated phenylselenyl trichloride. Like this, different aliphatic and aromatic cyclic and acyclic alkenes were converted to the dichlorinated products. Thereby, throughout high diastereoselectivities were achieved for the cis-chlorinated compounds of >95 : 5 or higher.

6.
Chemphyschem ; 22(11): 1065-1073, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33768634

RESUMO

Pyrene derivatives play a prominent role in organic electronic devices, including field effect transistors, light emitting diodes, and solar cells. The flexibility in the desired properties has previously been achieved by variation of substituents at the periphery of the pyrene backbone. In contrast, the influence of the topology of the central π-electron system on the relevant properties such as the band gap or the fluorescence behavior has not yet been addressed. In this work, pyrene is compared with its structural isomer azupyrene, which has a π-electron system with non-alternant topology. Using photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy, and other methods, it is shown that the electronic band gap of azupyrene is by 0.72 eV smaller than that of pyrene. The difference of the optical band gaps is even larger with 1.09 eV, as determined by ultraviolet-visible absorption spectroscopy. The non-alternant nature of azupyrene is also associated with a more localized charge distribution. Further insight is provided by density functional theory (DFT) calculations of the molecular properties and ab initio coupled cluster calculations of the optical transitions. The concept of aromaticity is used to interpret the major topology-related differences.

7.
Angew Chem Int Ed Engl ; 60(37): 20313-20317, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34232547

RESUMO

The acyl nitroso Diels-Alder reaction of 1,3-dienes with electrochemically oxidised hydroxamic acids is described. By using alternating current electrolysis, their typical electro-induced decomposition could be suppressed in favour of the 1,2-oxazine cycloaddition products. The reaction was optimised using Design of Experiments (DoE) and a sensitivity test was conducted. A mixture of triethylamine/hexafluoroisopropanol served as supporting electrolyte in dichloromethane, thus giving products of high purity after evaporation of the volatiles without further purification. The optimised reaction conditions were applied to various 1,3-dienes and hydroxamic acids, giving up to 96 % isolated yield.

8.
Angew Chem Int Ed Engl ; 60(18): 9996-10000, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33656769

RESUMO

The generation of bromine by oxidation of bromide anions at the anode and reduction of molecular oxygen at the cathode to hydrogen peroxide resulted in the overall formation of two molecules of Br2 (=four electron oxidation) by passing just two electrons through the solution. The bromine was used for the bromination of alkenes and thereby a linear paired electrolysis was attained which resulted in current efficencies of up to 200 %. Also, the diiodination of cyclohexene as well as the electrophilic aromatic bromination of an electron-rich arene were realised both in 168 % current efficiencies.

9.
Angew Chem Int Ed Engl ; 60(44): 23661-23666, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34476880

RESUMO

Indium tribromide catalysed the transfer hydrogenation from dihydroaromatic compounds, such as the commercially available γ-terpinene, to enones, which resulted in the cyclisation to trisubstituted furan derivatives. The reaction was initiated by a Michael addition of a hydride nucleophile to the enone subunit followed by a Lewis-acid-assisted cyclisation and the formation of a furan-indium intermediate and a Wheland intermediate derived from the dihydroaromatic starting material. The product was formed by protonation from the Wheland complex and replaced the indium tribromide substituent. In addition, a site-specific deuterium labelling of the dihydroaromatic HD surrogates resulted in site specific labelling of the products and gave useful insights into the reaction mechanism by H-D scrambling.

10.
Chemistry ; 26(41): 8879-8884, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32220135

RESUMO

An electrochemical iodine-mediated transformation of enamino-esters for the synthesis of 2H-azirine-2-carboxylates is presented. In addition, a thermic conversion of azirines to 4-carboxy-oxazoles in quantitative yield without purification was described. Both classes 2H-azirines-2-carboxylates and the 4-carboxy-oxazoles are substructures in natural products and therefore are of considerable interest for synthetic and pharmaceutical chemists. The optimization was not performed in a conventional manner with a one-factor-at-a-time process but with a Design of Experiments (DoE) approach. Beside a broad substrate scope the reaction was also employed to a robustness screen, a sensitivity assessment, and complemented with mechanistic considerations from cyclic voltammetry experiments.

11.
Chemistry ; 26(53): 12129-12133, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32271963

RESUMO

A diastereoselective hydroalkynylation of terminal alkynes to form the head-to-head dimerization products by two different cobalt-phosphine catalyst system is reported. The use of the bidentate ligand dppp and additional triphenylphosphine led to the selective formation of the (E)-1,3-enynes (E:Z>99:1) in good to excellent yields, while the tridentate ligand TriPhos led to the corresponding (Z)-1,3-enynes in moderate to good yields with excellent stereoselectivities (up to E:Z=1:99). Both pre-catalysts are easy to handle, because of their stability under atmospheric conditions. The optimized reaction conditions were identified by the Design of Experiments (DoE) approach, which has not been used before in cobalt-catalysed reaction optimisation. DoE decreased the number of required reactions to a minimum.

12.
Chemistry ; 26(14): 3129-3136, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31908043

RESUMO

A novel approach of electrolysis using alternating current was applied in the sulfur-sulfur bond metathesis of symmetrical disulfides towards unsymmetrical disulfides. As initially expected, a statistical distribution in disulfides was obtained. Furthermore, the influence of electrode polarisation by alternating current was investigated on a two-disulfide matrix. The highly dynamic nature of this chemistry resulted in the creation of dynamic disulfide libraries by expansion of the matrices, consisting of up to six symmetrical disulfides. In addition, mixing of matrices and stepwise expanding of a matrix by using alternating current electrolysis were realised.

13.
Chemistry ; 26(15): 3222-3225, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31850604

RESUMO

Cyclic α-(ortho-iodophenyl)-ß-oxoesters were converted in a ring-expanding transformation to furnish benzannulated cycloalkanone carboxylic esters. The reaction sequence started by electrochemical reduction of the iodoarene moiety. In a mechanistic rationale, the resulting carbanionic species was adding to the carbonyl group under formation of a strained, tricyclic benzocyclobutene intermediate, which underwent carbon-carbon bond cleavage and rearrangement of the carbon skeleton by retro-aldol reaction. The scope of the reaction sequence was investigated by converting cyclic oxoesters with different ring sizes yielding benzocycloheptanone, -nonanone and -decanone derivatives in moderate to good yields. Furthermore, acyclic starting materials and cyclic compounds carrying additional substituents on the iodophenyl ring were submitted to this reaction sequence. The starting materials for this transformation are straightforwardly obtained by conversion of ß-oxoesters with phenyliodobis(trifluoroacetate).

14.
J Org Chem ; 85(11): 7595-7602, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32348141

RESUMO

The cobalt-catalyzed hydrovinylation reaction and the Alder-ene reaction generate acyclic 1,4-dienes, which were investigated in the selenium dioxide oxidation to afford further functionalized dienes prone for follow-up reactions. The chemoselective allylic oxidation of ester-functionalized 1,4-dienes occurs at the most electron-rich double bond. The steric demand of the electron-rich, alkyl-substituted double bond determines the reaction pathway, whether the double bond transposition toward the conjugated 1,3-diene or the allylic oxidation is faster. As reaction products, 2,4-diene-6-ols or divinyl ketones were obtained.

15.
Nature ; 515(7525): 100-3, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373679

RESUMO

Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.

16.
J Am Chem Soc ; 141(44): 17713-17720, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31617709

RESUMO

Various two-dimensional (2D) carbon allotropes with nonalternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the nonalternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene, have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tips and density functional theory calculations have been used to elucidate their structural properties. The proposed synthesis of nonalternant carbon nanoribbons from the fusion of synthetic line-defects may pave the way for large-area preparation of novel 2D carbon allotropes.

17.
J Am Chem Soc ; 140(24): 7526-7532, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29750508

RESUMO

Aromatic C-H bond activation has attracted much attention due to its versatile applications in the synthesis of aryl-containing chemicals. The major challenge lies in the minimization of the activation barrier and maximization of the regioselectivity. Here, we report the highly selective activation of the central aromatic C-H bond in meta-aryne species anchored to a copper surface, which catalyzes the C-H bond dissociation. Two prototype molecules, i.e., 4',6'-dibromo- meta-terphenyl and 3',5'-dibromo- ortho-terphenyl, have been employed to perform C-C coupling reactions on Cu(111). The chemical structures of the resulting products have been clarified by a combination of scanning tunneling microscopy and noncontact atomic force microscopy. Both methods demonstrate a remarkable weakening of the targeted C-H bond. Density functional theory calculations reveal that this efficient C-H activation stems from the extraordinary chemisorption of the meta-aryne on the Cu(111) surface, resulting in the close proximity of the targeted C-H group to the Cu(111) surface and the absence of planarity of the phenyl ring. These effects lead to a lowering of the C-H dissociation barrier from 1.80 to 1.12 eV, in agreement with the experimental data.

18.
Chemistry ; 24(59): 15781-15785, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30133017

RESUMO

A new electrochemical iodine(III)-mediated cyclisation reaction for the synthesis of 4-(2,2,2-trifluoroethoxy)isochroman-1-ones is presented. Based on this reaction design of experiments and multivariate linear regression analysis were used to demonstrate their first application in an electrochemical reaction. The broad applicability of these reaction conditions could be shown by a range of substrates and an extensive compatibility test.

19.
J Org Chem ; 83(7): 3915-3920, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29484887

RESUMO

The electrophilic ipso-substitution of trimethylsilyl-substituted benzene derivatives into nitrosobenzene derivatives is reported. The optimization of the reaction conditions was performed for moderately electron-deficient, electron-rich, and sterically hindered starting materials by varying reaction time, temperature, and equivalents of NOBF4. Also, a stable intermediate of the nitrosation reaction could be characterized by 19F NMR which can be assigned to a NO+ adduct with the nitrosobenzene derivative. This complex decomposes upon aqueous workup and liberates the desired nitrosobenzene derivative.

20.
Angew Chem Int Ed Engl ; 57(2): 442-445, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29215798

RESUMO

An electrochemical access to iodinated aromatic compounds starting from trimethylsilyl-substituted arenes is presented. By design of experiments, highly efficient and mild conditions were identified for a wide range of substrates. A functional group stability test and the synthesis of an important 3-iodobenzylguanidine radiotracer illustrate the scope of this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA