Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biochem J ; 474(12): 1981-1992, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28455390

RESUMO

Transport of bile acids across the basolateral membrane of the intestinal enterocyte is carried out by the organic solute transporter (Ost) composed of a seven-transmembrane domain (TMD) subunit (Ostα) and an ancillary single TMD subunit (Ostß). Although previous investigations have demonstrated the importance of the TMD of Ostß for its activity, further studies were conducted to assess the contributions of other regions of the Ostß subunit. Transport activity was retained when Ostß was truncated to contain only the TMD with 15 additional residues on each side and co-expressed with Ostα, whereas shorter fragments were inactive. To probe the broader functions of Ostß segments, chimeric proteins were constructed in which N-terminal, TMD or C-terminal regions of Ostß were fused to corresponding regions of receptor activity-modifying protein (RAMP1), a single TMD protein required by several seven-TMD G-protein-coupled receptors including the calcitonin receptor-like receptor (CLR). Ostß/RAMP1 chimeras were expressed with Ostα and CLR. As expected, replacing the Ostß TMD abolished transport activity; however, replacing either the entire N-terminal or entire C-terminal domain of Ostß with RAMP1 sequences did not prevent plasma membrane localization or the ability to support [3H]taurocholate uptake. Co-immunoprecipitation experiments revealed that the C-terminus of Ostß is a previously unrecognized site of interaction with Ostα. All chimeras containing N-terminal RAMP1 segments allowed co-expressed CLR to respond to agonists with strong increases in cyclic AMP. These results provide new insights into the structure and function of the heteromeric Ost transporter complex.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/agonistas , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Homologia Estrutural de Proteína , Ácido Taurocólico/metabolismo , Trítio
2.
J Biol Chem ; 290(46): 27972-85, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26424796

RESUMO

The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Engenharia de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
3.
Am J Physiol Gastrointest Liver Physiol ; 306(5): G425-38, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381083

RESUMO

The organic solute transporter OSTα-OSTß is a key transporter for the efflux of bile acids across the basolateral membrane of ileocytes and the subsequent return of bile acids to the liver. Ostα(-/-) mice exhibit reduced bile acid pools and impaired lipid absorption. In this study, wild-type and Ostα(-/-) mice were characterized at 5 and 12 mo of age. Ostα(-/-) mice were resistant to age-related weight gain, body fat accumulation, and liver and muscle lipid accumulation, and male Ostα(-/-) mice lived slightly longer than wild-type mice. Caloric intake and activity levels were similar for Ostα(-/-) and wild-type male mice. Fecal lipid excretion was increased in Ostα(-/-) mice, indicating that a defect in lipid absorption contributes to decreased fat accumulation. Analysis of genes involved in intestinal lipid absorption revealed changes consistent with decreased dietary lipid absorption in Ostα(-/-) animals. Hepatic expression of cholesterol synthetic genes was upregulated in Ostα(-/-) mice, showing that increased cholesterol synthesis partially compensated for reduced dietary cholesterol absorption. Glucose tolerance was improved in male Ostα(-/-) mice, and insulin sensitivity was improved in male and female Ostα(-/-) mice. Akt phosphorylation was measured in liver and muscle tissue from mice after acute administration of insulin. Insulin responses were significantly larger in male and female Ostα(-/-) than wild-type mice. These findings indicate that loss of OSTα-OSTß protects against age-related weight gain and insulin resistance.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Resistência à Insulina/genética , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Aumento de Peso/genética , Tecido Adiposo/fisiologia , Envelhecimento/genética , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico , Composição Corporal/genética , Composição Corporal/fisiologia , Feminino , Metabolismo dos Lipídeos/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia
4.
J Biol Chem ; 287(25): 21233-43, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22535958

RESUMO

The organic solute transporter, Ost/Slc51, is composed of two distinct proteins that must heterodimerize to generate transport activity, but the role of the individual subunits in mediating transport activity is unknown. The present study identified regions in Ostß required for heterodimerization with Ostα, trafficking of the Ostα-Ostß complex to the plasma membrane, and bile acid transport activity in HEK293 cells. Bimolecular fluorescence complementation analysis revealed that a 25-amino acid peptide containing the Ostß transmembrane (TM) domain heterodimerized with Ostα, although the resulting complex failed to reach the plasma membrane and generate cellular [(3)H]taurocholate transport activity. Deletion of the single TM domain of Ostß abolished interaction with Ostα, demonstrating that the TM segment is necessary and sufficient for formation of a heteromeric complex with Ostα. Mutation of the highly conserved tryptophan-asparagine sequence within the TM domain of Ostß to alanines did not prevent cell surface trafficking, but abolished transport activity. Removal of the N-terminal 27 amino acids of Ostß resulted in a transporter complex that reached the plasma membrane and exhibited transport activity at 30 °C. Complete deletion of the C terminus of Ostß abolished [(3)H]taurocholate transport activity, but reinsertion of two native arginines immediately C-terminal to the TM domain rescued this defect. These positively charged residues establish the correct N(exo)/C(cyt) topology of the peptide, in accordance with the positive inside rule. Together, the results demonstrate that Ostß is required for both proper trafficking of Ostα and formation of the functional transport unit, and identify specific residues of Ostß critical for these processes.


Assuntos
Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Multimerização Proteica/fisiologia , Ácidos e Sais Biliares/genética , Membrana Celular/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana Transportadoras/genética , Mutação , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
5.
Gen Comp Endocrinol ; 174(1): 5-14, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21846469

RESUMO

Analysis of the functional expression of the melanocortin 2 receptor (MC2R) from a rather broad spectrum of vertebrates indicates that MC2R is exclusively selective for the ligand, ACTH, and the melanocortin receptor accessory protein 1 (MRAP1) is required for high affinity ACTH binding and activation of MC2R. A phylogenetic analysis of MRAP1 suggested that tetrapod sequences and bony fish sequences may represent two distinct trends in the evolution of the mrap1 gene. To test this hypothesis, a frog (Xenopus tropicalis) MC2R was expressed in CHO cells either in the presence of a tetrapod (mouse) MRAP1 or a bony fish (zebrafish) MRAP1. The response of frog MC2R to different concentrations of human ACTH(1-24) was more robust in the presence of mouse MRAP1 than in the presence of zebrafish MRAP1. Conversely, the cAMP response mediated by the rainbow trout (Oncorhynchus mykiss) MC2R was almost twofold higher and occurred at 1000-fold lower ACTH concentration in the presence of zebrafish MRAP1 than in the presence of mouse MRAP1. Collectively, these experiments raise the possibility that at least two distinct trends have emerged in the co-evolution of MC2R/MRAP1 interactions during the radiation of the vertebrates.


Assuntos
Anuros/metabolismo , Oncorhynchus mykiss/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Células CHO , Cricetinae , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Receptor Tipo 2 de Melanocortina/genética
6.
Biochem J ; 428(2): 235-45, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20345371

RESUMO

Two GPCRs (G-protein-coupled receptors), TRHR (thyrotropin-releasing hormone receptor) and beta(2)AR (beta(2)-adrenergic receptor), are regulated in distinct manners. Following agonist binding, TRHR undergoes rapid phosphorylation attributable to GRKs (GPCR kinases); beta(2)AR is phosphorylated by both second messenger-activated PKA (protein kinase A) and GRKs with slower kinetics. TRHR co-internalizes with arrestin, whereas beta(2)AR recruits arrestin, but internalizes without it. Both receptors are dephosphorylated following agonist removal, but TRHR is dephosphorylated much more rapidly while it remains at the plasma membrane. We generated chimaeras swapping the C-terminal domains of these receptors to clarify the role of different receptor regions in phosphorylation, internalization and dephosphorylation. beta(2)AR with a TRHR cytoplasmic tail (beta(2)AR-TRHR) and TRHR with a beta(2)AR tail (TRHR-beta(2)AR) signalled to G-proteins normally. beta(2)AR-TRHR was phosphorylated well at the PKA site in the third intracellular loop, but poorly at GRK sites in the tail, whereas TRHR-beta(2)AR was phosphorylated strongly at GRK sites in the tail (Ser(355)/Ser(356) of the beta(2)AR). Both chimaeric receptors exhibited prolonged, but weak, association with arrestin at the plasma membrane, but high-affinity arrestin interactions and extensive co-internalization of receptor with arrestin required a phosphorylated TRHR tail. In contrast, swapping C-terminal domains did not change the rates of phosphorylation and dephosphorylation or the dependence of TRHR dephosphorylation on the length of agonist exposure. Thus the interactions of GPCRs with GRKs and phosphatases are determined not simply by the amino acid sequences of the substrates, but by regions outside the cytoplasmic tails.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Animais , Arrestina/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Isoproterenol/farmacologia , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Ligação Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores do Hormônio Liberador da Tireotropina/agonistas , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Proteínas Recombinantes de Fusão/agonistas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia
7.
Mol Pharmacol ; 77(2): 288-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906838

RESUMO

The thyrotropin-releasing hormone (TRH) receptor undergoes rapid and extensive agonist-dependent phosphorylation attributable to G protein-coupled receptor (GPCR) kinases (GRKs), particularly GRK2. Like many GPCRs, the TRH receptor is predicted to form an amphipathic helix, helix 8, between the NPXXY motif at the cytoplasmic end of the seventh transmembrane domain and palmitoylation sites at Cys335 and Cys337. Mutation of all six lysine and arginine residues between the NPXXY and residue 340 to glutamine (6Q receptor) did not prevent the receptor from stimulating inositol phosphate turnover but almost completely prevented receptor phosphorylation in response to TRH. Phosphorylation at all sites in the cytoplasmic tail was inhibited. The phosphorylation defect was not reversed by long incubation times or high TRH concentrations. As expected for a phosphorylation-defective receptor, the 6Q-TRH receptor did not recruit arrestin, undergo the typical arrestin-dependent increase in agonist affinity, or internalize well. Lys326, directly before phenylalanine in the common GPCR motif NPXXY(X)(5-6)F(R/K), was critical for phosphorylation. The 6Q-TRH receptor was not phosphorylated effectively in cells overexpressing GRK2 or in in vitro kinase assays containing purified GRK2. Phosphorylation of the 6Q receptor was partially restored by coexpression of a receptor with an intact helix 8 but without phosphorylation sites. Phosphorylation was inhibited but not completely prevented by alanine substitution for cysteine palmitoylation sites. Positively charged amino acids in the proximal tail of the beta2-adrenergic receptor were also important for GRK-dependent phosphorylation. The results indicate that positive residues in helix 8 of GPCRs are important for GRK-dependent phosphorylation.


Assuntos
Quinases de Receptores Acoplados a Proteína G/química , Quinases de Receptores Acoplados a Proteína G/fisiologia , Receptores do Hormônio Liberador da Tireotropina/química , Receptores do Hormônio Liberador da Tireotropina/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação/fisiologia , Estrutura Secundária de Proteína/fisiologia
8.
J Biol Chem ; 284(34): 22641-8, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19535343

RESUMO

MC2 (ACTH) receptors require MC2 receptor accessory protein (MRAP) to reach the cell surface. In this study, we show that MRAP has the opposite effect on the closely related MC5 receptor. In enzyme-linked immunosorbent assay and microscopy experiments, MC2 receptor was retained in the endoplasmic reticulum in the absence of MRAP and targeted to the plasma membrane with MRAP. MC5 receptor was at the plasma membrane in the absence of MRAP, but trapped intracellularly when expressed with MRAP. Using bimolecular fluorescence complementation, where one fragment of yellow fluorescent protein (YFP) was fused to receptors and another to MRAP, we showed that MC2 receptor-MRAP dimers were present at the plasma membrane, whereas MC5 receptor-MRAP dimers were intracellular. Both MC2 and MC5 receptors co-precipitated with MRAP. MRAP did not alter expression of beta2-adrenergic receptors or co-precipitate with them. To determine if MRAP affects formation of receptor oligomers, we co-expressed MC2 receptors fused to YFP fragments in the presence or absence of MRAP. YFP fluorescence, reporting MC2 receptor homodimers, was readily detectable with or without MRAP. In contrast, MC5 receptor homodimers were visible in the absence of MRAP, but little fluorescence was observed by microscopic analysis when MRAP was co-expressed. Co-precipitation of differentially tagged receptors confirmed that MRAP blocks MC5 receptor dimerization. The regions of MRAP required for its effects on MC2 and MC5 receptors differed. These results establish that MRAP forms stable complexes with two different melanocortin receptors, facilitating surface expression of MC2 receptor but disrupting dimerization and surface localization of MC5 receptor.


Assuntos
Proteínas de Membrana/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Multimerização Proteica , Receptor Tipo 2 de Melanocortina/genética , Receptores de Melanocortina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Proc Natl Acad Sci U S A ; 104(51): 20244-9, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18077336

RESUMO

The melanocortin-2 (MC2) receptor accessory protein (MRAP) is required for trafficking of the G protein-coupled MC2 receptor to the plasma membrane. The mechanism of action and structure of MRAP, which has a single transmembrane domain, are unknown. Here, we show that MRAP displays a previously uncharacterized topology. Epitopes on both the N- and C-terminal ends of MRAP were localized on the external face of CHO cells at comparable levels. Using antibodies raised against N- and C-terminal MRAP peptides, we demonstrated that both ends of endogenous MRAP face the outside in adrenal cells. Nearly half of MRAP was glycosylated at the single endogenous N-terminal glycosylation site, and over half was glycosylated when the natural glycosylation site was replaced by one in the C-terminal domain. A mutant MRAP with potential glycosylation sites on both sides of the membrane was singly but not doubly glycosylated, suggesting that MRAP is not monotopic. Coimmunoprecipitation of differentially tagged MRAPs established that MRAP is a dimer. By selectively immunoprecipitating cell surface MRAP in one or the other orientation, we showed that MRAP homodimers are antiparallel and form a stable complex with MC2 receptor. In the absence of MRAP, MC2 receptor was trapped in the endoplasmic reticulum, but with MRAP, the MC2 receptor was glycosylated and localized on the plasma membrane, where it signaled in response to ACTH. MRAP acted specifically, because it did not increase surface expression of other melanocortin, beta2-adrenergic, or TSH-releasing hormone receptors. MRAP is the first eukaryotic membrane protein identified with an antiparallel homodimeric structure.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Tipo 2 de Melanocortina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Cricetinae , Cricetulus , Dimerização , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
10.
Proc Natl Acad Sci U S A ; 104(46): 18303-8, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17989235

RESUMO

The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization.


Assuntos
Receptores do Hormônio Liberador da Tireotropina/metabolismo , Dimerização , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Fosforilação , Receptores do Hormônio Liberador da Tireotropina/química
11.
Mol Cell Endocrinol ; 300(1-2): 25-31, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19028547

RESUMO

The melanocortin2 (MC2), or ACTH receptor, requires MC2 receptor accessory protein (MRAP) for function, and individuals lacking MRAP are ACTH-resistant and glucocorticoid-deficient. MRAP facilitates trafficking of the MC2 receptor to the plasma membrane and is absolutely required for ACTH binding and stimulation of cAMP. MRAP, which contains a single transmembrane domain, has a unique structure, an antiparallel homodimer. It can be isolated from the plasma membrane in a complex with the MC2 receptor. A short sequence just aminoterminal to the transmembrane domain of MRAP is essential for dual topology, while the transmembrane region is not; both are necessary for function. Deletion or alanine-substitution of other aminoterminal regions yields MRAP mutants that promote surface expression of the MC2 receptor but not receptor signaling. These results identify two distinct actions of MRAP: to permit trafficking of the MC2 receptor, and to allow surface receptor binding and signaling.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Quaternária de Proteína , Hormônio Adrenocorticotrópico/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/genética
12.
Mol Pharmacol ; 74(1): 195-202, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18413662

RESUMO

Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.


Assuntos
Arrestina/metabolismo , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Animais , Arrestina/química , Arrestina/genética , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hemaglutininas/metabolismo , Humanos , Fosfatos de Inositol/biossíntese , Rim/citologia , Ligantes , Camundongos , Modelos Biológicos , Mutação , Fosforilação , Estrutura Terciária de Proteína , Receptores do Hormônio Liberador da Tireotropina/química , Transfecção
13.
Neurosci Lett ; 431(1): 26-30, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18069127

RESUMO

Glp-Asn-Pro-D-Tyr-D-TrpNH(2) is a novel synthetic peptide that mimics and amplifies central actions of thyrotropin-releasing hormone (TRH) in rat without releasing TSH. The aim of this study was to compare the binding properties of this pentapeptide and its all-L counterpart (Glp-Asn-Pro-Tyr-TrpNH(2)) to TRH receptors in native rat brain tissue and cells expressing the two TRH receptor subtypes identified in rat to date, namely TRHR1 and TRHR2. Radioligand binding studies were carried out using [(3)H][3-Me-His(2)]TRH to label receptors in hippocampal, cortical and pituitary tissue, GH4 pituitary cells, as well as CHO cells expressing TRHR1 and/or TRHR2. In situ hybridization studies suggest that cortex expresses primarily TRHR2 mRNA, hippocampus primarily TRHR1 mRNA and pituitary exclusively TRHR1 mRNA. Competition experiments showed [3-Me-His(2)]TRH potently displaced [(3)H][3-Me-His(2)]TRH binding from all tissues/cells investigated. Glp-Asn-Pro-D-Tyr-D-TrpNH(2) in concentrations up to 10(-5)M did not displace [(3)H][3-Me-His(2)]TRH binding to membranes derived from GH4 cells or CHO-TRHR1 cells, consistent with its lack of binding to pituitary membranes and TSH-releasing activity. Similar results were obtained for the corresponding all-L peptide. In contrast, both pentapeptides displaced binding from rat hippocampal membranes (pIC(50) Glp-Asn-Pro-D-Tyr-D-TrpNH(2): 7.7+/-0.2; pIC(50) Glp-Asn-Pro-Tyr-TrpNH(2): 6.6+/-0.2), analogous to cortical membranes (pIC(50) Glp-Asn-Pro-D-Tyr-D-TrpNH(2): 7.8+/-0.2; pIC(50) Glp-Asn-Pro-Tyr-TrpNH(2): 6.6+/-0.2). Neither peptide, however, displaced [(3)H][3-Me-His(2)]TRH binding to CHO-TRHR2. Thus, this study reveals for the first time significant differences in the binding properties of native and heterologously expressed TRH receptors. Also, the results raise the possibility that Glp-Asn-Pro-D-Tyr-D-TrpNH(2) is not displacing [(3)H][3-Me-His(2)]TRH from a known TRH receptor in rat cortex, but rather a hitherto unidentified TRH receptor.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Oligopeptídeos/metabolismo , Hipófise/metabolismo , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/análogos & derivados , Hormônio Liberador de Tireotropina/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Sítios de Ligação/fisiologia , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Células CHO , Córtex Cerebral/efeitos dos fármacos , Cricetinae , Cricetulus , Hipocampo/efeitos dos fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Hipófise/efeitos dos fármacos , Ensaio Radioligante , Ratos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores do Hormônio Liberador da Tireotropina/efeitos dos fármacos , Hormônio Liberador de Tireotropina/síntese química , Hormônio Liberador de Tireotropina/farmacologia
14.
Neuropharmacology ; 52(7): 1472-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17418282

RESUMO

Thyrotropin-releasing hormone (TRH) displays multiple CNS-mediated actions that have long been recognized to have therapeutic potential in treating a wide range of neurological disorders. Investigations of CNS functions and clinical use of TRH are hindered, however, due to its rapid degradation by TRH-degrading ectoenzyme (TRH-DE). We now report the discovery of a set of first-in-class compounds that display unique ability to both potently inhibit TRH-DE and bind to central TRH receptors with unparalleled affinity. This dual pharmacological activity within one molecular entity was found through selective manipulation of peptide stereochemistry. Notably, the lead compound of this set, L-pyroglutamyl-L-asparaginyl-L-prolyl-D-tyrosyl-D-tryptophan amide (Glp-Asn-Pro-D-Tyr-D-TrpNH(2)), is effective in vivo at producing and potentiating central actions of TRH without evoking release of thyroid-stimulating hormone (TSH). Specifically, this peptide displayed high plasma stability and combined potent inhibition of TRH-DE (K(i) 151 nM) with high affinity binding to central TRH receptors (K(i) 6.8 nM). Moreover, intraperitoneal injection of this peptide mimicked and augmented the effects of TRH on behavioural activity in rat. Analogous to TRH, it also antagonized pentobarbital-induced narcosis when administered intravenously. This discovery provides new opportunities for probing the role of TRH actions in the CNS and a basis for development of novel TRH-based neurotherapeutics.


Assuntos
Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Hormônio Liberador de Tireotropina/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva/efeitos dos fármacos , Cristalografia/métodos , Relação Dose-Resposta a Droga , Técnicas In Vitro , Atividade Motora/efeitos dos fármacos , Ratos , Receptores do Hormônio Liberador da Tireotropina/fisiologia
15.
J Clin Endocrinol Metab ; 102(7): 2433-2442, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419241

RESUMO

Context: Central congenital hypothyroidism (CCH) is an underdiagnosed disorder characterized by deficient production and bioactivity of thyroid-stimulating hormone (TSH) leading to low thyroid hormone synthesis. Thyrotropin-releasing hormone (TRH) receptor (TRHR) defects are rare recessive disorders usually associated with incidentally identified CCH and short stature in childhood. Objectives: Clinical and genetic characterization of a consanguineous family of Roma origin with central hypothyroidism and identification of underlying molecular mechanisms. Design: All family members were phenotyped with thyroid hormone profiles, pituitary magnetic resonance imaging, TRH tests, and dynamic tests for other pituitary hormones. Candidate TRH, TRHR, TSHB, and IGSF1 genes were screened for mutations. A mutant TRHR was characterized in vitro and by molecular modeling. Results: A homozygous missense mutation in TRHR (c.392T > C; p.I131T) was identified in an 8-year-old boy with moderate hypothyroidism (TSH: 2.61 mIU/L, Normal: 0.27 to 4.2; free thyroxine: 9.52 pmol/L, Normal: 10.9 to 25.7) who was overweight (body mass index: 20.4 kg/m2, p91) but had normal stature (122 cm; -0.58 standard deviation). His mother, two brothers, and grandmother were heterozygous for the mutation with isolated hyperthyrotropinemia (TSH: 4.3 to 8 mIU/L). The I131T mutation, in TRHR intracellular loop 2, decreases TRH affinity and increases the half-maximal effective concentration for signaling. Modeling of TRHR-Gq complexes predicts that the mutation disrupts the interaction between receptor and a hydrophobic pocket formed by Gq. Conclusions: A unique missense TRHR defect identified in a consanguineous family is associated with central hypothyroidism in homozygotes and hyperthyrotropinemia in heterozygotes, suggesting compensatory elevation of TSH with reduced biopotency. The I131T mutation decreases TRH binding and TRHR-Gq coupling and signaling.


Assuntos
Hipotireoidismo Congênito/genética , Predisposição Genética para Doença , Receptores do Hormônio Liberador da Tireotropina/genética , Ativação Transcricional/genética , Criança , Simulação por Computador , Hipotireoidismo Congênito/diagnóstico , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Doenças Raras , Testes de Função Tireóidea , Tireotropina/metabolismo
16.
Sci Rep ; 7: 42937, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262687

RESUMO

IGSF1 (Immunoglobulin Superfamily 1) gene defects cause central hypothyroidism and macroorchidism. However, the pathogenic mechanisms of the disease remain unclear. Based on a patient with a full deletion of IGSF1 clinically followed from neonate to adulthood, we investigated a common pituitary origin for hypothyroidism and macroorchidism, and the role of IGSF1 as regulator of pituitary hormone secretion. The patient showed congenital central hypothyroidism with reduced TSH biopotency, over-secretion of FSH at neonatal minipuberty and macroorchidism from 3 years of age. His markedly elevated inhibin B was unable to inhibit FSH secretion, indicating a status of pituitary inhibin B resistance. We show here that IGSF1 is expressed both in thyrotropes and gonadotropes of the pituitary and in Leydig and germ cells in the testes, but at very low levels in Sertoli cells. Furthermore, IGSF1 stimulates transcription of the thyrotropin-releasing hormone receptor (TRHR) by negative modulation of the TGFß1-Smad signaling pathway, and enhances the synthesis and biopotency of TSH, the hormone secreted by thyrotropes. By contrast, IGSF1 strongly down-regulates the activin-Smad pathway, leading to reduced expression of FSHB, the hormone secreted by gonadotropes. In conclusion, two relevant molecular mechanisms linked to central hypothyroidism and macroorchidism in IGSF1 deficiency are identified, revealing IGSF1 as an important regulator of TGFß/Activin pathways in the pituitary.


Assuntos
Ativinas/metabolismo , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hipotireoidismo/patologia , Imunoglobulinas/genética , Proteínas de Membrana/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Análise Mutacional de DNA , Subunidade beta do Hormônio Folículoestimulante/genética , Seguimentos , Deleção de Genes , Humanos , Hipotireoidismo/genética , Recém-Nascido , Masculino , Camundongos , Hipófise/metabolismo , Hipófise/patologia , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Proteínas Smad/metabolismo , Testículo/metabolismo , Testículo/patologia
17.
Endocrinology ; 147(12): 5948-55, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16973723

RESUMO

The melanocortin-4 (MC4) receptor plays a pivotal role in regulating food intake and energy expenditure, and obesity results from mutations that interfere with the MC4 receptor pathway. We investigated the effect of glucocorticoids on endogenous MC4 receptors expressed in GT1-1 cells, an immortalized hypothalamic neuronal cell line. Dexamethasone (Dex) caused a 5- to 10-fold increase in the cAMP response to the MC4 receptor agonist, NDP-alphaMSH. The stimulatory effect of Dex reached a maximum within 24 h and was blocked by the glucocorticoid antagonist RU486. This glucocorticoid effect was specific for the MC4 receptor and not a result of up-regulation of another component of the cAMP cascade, because the response to endogenous beta-adrenergic receptor stimulation was not altered by Dex. Dex also potentiated NDP-alphaMSH-mediated ERK1/2 activation. After 12 h, Dex caused a 3- to 5-fold increase in [125I]NDP-alphaMSH binding, which was maintained for at least 48 h and prevented by RU486. Dex withdrawal caused a rapid return of MC4 receptor concentration to the basal level. Dex-mediated increases in MC4 receptor concentration resulted from a rapid but transient increase in MC4 receptor mRNA. This regulation apparently requires genomic regulatory sequences because Dex did not increase MC4 receptor expression or signaling in CHO cells expressing the MC4 receptor under the control of a cytomegalovirus promoter. We conclude that in GT1-1 hypothalamic neurons, glucocorticoids increase the amplitude of MC4 receptor signaling. This regulation may serve as a control to limit the effects of glucocorticoids on food intake.


Assuntos
Glucocorticoides/farmacologia , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Células Cultivadas , Cricetinae , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Transfecção
18.
Mol Endocrinol ; 19(11): 2859-70, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16020481

RESUMO

To investigate the function of dimerization of the TRH receptor, a controlled dimerization system was developed. A variant FK506 binding protein (FKBP) domain was fused to the receptor C terminus and dimerization induced by incubating cells with dimeric FKBP ligand, AP20187. The TRH receptor-fusion bound hormone and signaled normally. Addition of dimerizer to cells expressing the receptor-FKBP fusion dramatically increased the fraction of receptor running as dimer on SDS-PAGE. AP20187 caused dimerization in a time- and concentration-dependent manner, acting within 1 min. Dimerizer had no effect on TRH receptors lacking the FKBP domain, and its effects were blocked by excess monomeric FKBP ligand. AP20187-induced dimerization did not cause receptor phosphorylation, inositol phosphate production, or ERK1/2 activation, and dimerizer did not alter signaling by TRH. Induced dimerization did, however, alter TRH receptor trafficking. TRH promoted greater receptor internalization in cells treated with AP20187 but not monomeric ligand, based on loss of surface binding sites and immunostaining. Dimerization increased the rate of internalization of TRH receptors and decreased the apparent rate of receptor recycling. AP20187 enhanced the small amount of TRH-induced receptor internalization when the receptor-FKBP fusion protein was expressed in cells lacking beta-arrestins. The results show that controlled dimerization of the TRH receptor potentiates hormone-induced receptor trafficking.


Assuntos
Receptores do Hormônio Liberador da Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Arrestinas/metabolismo , Células CHO , Cálcio/metabolismo , Membrana Celular/química , Cricetinae , Dimerização , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores do Hormônio Liberador da Tireotropina/análise , Receptores do Hormônio Liberador da Tireotropina/efeitos dos fármacos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/análise , Proteínas de Ligação a Tacrolimo/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/metabolismo , Hormônio Liberador de Tireotropina/farmacologia , Fosfolipases Tipo C/metabolismo , beta-Arrestinas
19.
Artigo em Inglês | MEDLINE | ID: mdl-27486435

RESUMO

Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.

20.
Sci Rep ; 6: 28969, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27373344

RESUMO

In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity.


Assuntos
Regulação da Expressão Gênica , Oncorhynchus mykiss/fisiologia , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 2 de Melanocortina/biossíntese , Receptores do Hormônio Hipofisário/metabolismo , Estresse Fisiológico , Animais , Expressão Gênica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , RNA Mensageiro/biossíntese , Receptores do Hormônio Hipofisário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA