Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 27(10): 14716-14724, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163916

RESUMO

We investigate the high frequency modulation characteristics of mid-infrared surface-emitting ring and edge-emitting ridge quantum cascade lasers (QCLs). In particular, a detailed comparison between circular ring devices and ridge-QCLs from the same laser material, which have a linear waveguide in a "Fabry-Pérot (FP) type" cavity, reveals distinct similarities and differences. Both device types are single-mode emitting, based on either 2 nd- (ring-QCL) or 1 st-order (ridge-QCL) distributed feedback (DFB) gratings with an emission wavelength around 7.56 µm. Their modulation characteristics are investigated in the frequency-domain using an optical frequency-to-amplitude conversion technique based on the ro-vibrational absorptions of CH 4. We observe that the amplitude of frequency tuning Δf over intensity modulation index m as function of the modulation frequency behaves similarly for both types of devices, while the ring-QCLs typically show higher values. The frequency-to-intensity modulation (FM-IM) phase shift shows a decrease starting from ∼72 ∘ at a modulation frequency of 800 kHz to about 0 ∘ at 160 MHz. In addition, we also observe a quasi single-sideband (qSSB) regime for modulation frequencies above 100 MHz, which is identified by a vanishing -1 st-order sideband for both devices. This special FM-state can be observed in DFB QCLs and is in strong contrast to the behavior of regular DFB diode lasers, which do not achieve any significant sideband suppression. By analyzing these important high frequency characteristics of ring-QCLs and comparing them to ridge DFB-QCLs, it shows the potential of intersubband devices for applications in e.g. novel spectroscopic techniques and highly-integrated and high-bitrate free-space data communication. In addition, the obtained results close an existing gap in literature for high frequency modulation characteristics of QCLs.

2.
Opt Express ; 24(4): 3294-312, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906992

RESUMO

We present the electrical and optical characterization and theoretical modeling of the transient behavior of regular 4.5-µm single-mode emitting distributed feedback (DFB) quantum cascade lasers (QCLs). Low residual capacitance together with a high-frequency optimized three-terminal coplanar waveguide configuration leads to modulation frequencies up to 23.5 GHz (optical) and 26.5 GHz (electrical), respectively. A maximum 3-dB cut-off value of 6.6 GHz in a microwave rectification scheme is obtained, with a significant increase in electrical modulation bandwidth when increasing the DC-current for the entire current range of the devices. Optical measurements by means of FTIR-spectroscopy and a heterodyne beating experiment reveal the presence of a resonance peak, due to coupling of the lasing DFB- with its neighboring below-threshold Fabry-Pérot-(FP-)mode, when modulating around the cavity roundtrip frequency. This resonance is modeled by a 2-mode Maxwell-Bloch formalism. It enhances only one sideband and consequently leads to the first experimental observation of the single-sideband regime in such kind of devices.

3.
ACS Photonics ; 11(2): 395-403, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405392

RESUMO

Many precision applications in the mid-infrared spectral range have strong constraints based on quantum effects that are expressed in particular noise characteristics. They limit, e.g., sensitivity and resolution of mid-infrared imaging and spectroscopic systems as well as the bit-error rate in optical free-space communication. Interband cascade lasers (ICLs) are a class of mid-infrared lasers exploiting interband transitions in type-II band alignment geometry. They are currently gaining significant importance for mid-infrared applications from < 3 to > 6 µm wavelength, enabled by novel types of high-performance ICLs such as ring-cavity devices. Their noise behavior is an important feature that still needs to be thoroughly analyzed, including its potential reduction with respect to the shot-noise limit. In this work, we provide a comprehensive characterization of λ = 3.8 µm-emitting, continuous-wave ring ICLs operating at room temperature. It is based on an in-depth study of their main physical intensity noise features such as their bias-dependent intensity noise power spectral density and relative intensity noise. We obtained shot-noise-limited statistics for Fourier frequencies above 100 kHz. This is an important result for precision applications, e.g., interferometry or advanced spectroscopy, which benefit from exploiting the advantage of using such a shot-noise-limited source, enhancing the setup sensitivity. Moreover, it is an important feature for novel quantum optics schemes, including testing specific light states below the shot-noise level, such as squeezed states.

4.
Nanophotonics ; 13(10): 1759-1764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681676

RESUMO

Heterodyne detection based on interband cascade lasers (ICL) has been demonstrated in a wide range of different applications. However, it is still often limited to bulky tabletop systems using individual components such as dual laser setups, beam shaping elements, and discrete detectors. In this work, a versatile integrated ICL platform is investigated for tackling this issue. A RF-optimized, two-section ICL approach is employed, consisting of a short section typically used for efficient modulation of the cavity field and a long gain section. Such a laser is operated in reversed mode, with the entire Fabry-Pérot waveguide utilized as a semiconductor optical amplifier (SOA) and the electrically separated short section as detector. Furthermore, a racetrack cavity is introduced as on-chip single-mode reference generator. The field of the racetrack cavity is coupled into the SOA waveguide via an 800 nm gap. By external injection of a single mode ICL operating at the appropriate wavelength, a heterodyne beating between the on-chip reference and the injected signal can be observed on the integrated detector section of the SOA-detector.

5.
Opt Express ; 21(16): 19180-6, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938833

RESUMO

We present the design and realization of short-wavelength (λ = 4.53 µm) and buried-heterostructure quantum cascade lasers in a master oscillator power amplifier configuration. Watt-level, singlemode peak optical output power is demonstrated for typical non-tapered 4 µm wide and 5.25 mm long devices. Farfield measurements prove a symmetric, single transverse-mode emission in TM(00)-mode with typical divergences of 25° and 27° in and perpendicular to growth direction, respectively. We demonstrate singlemode tuning over a range of 7.9 cm(-1) for temperatures between 263K and 313K and also singlemode emission for different driving currents. The side mode suppression ratio is measured to be higher than 20 dB.

6.
Lab Chip ; 23(7): 1816-1824, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800171

RESUMO

Quality control of liquids is an important part of analytical chemistry. The gold standard for measuring residual water in organic solvents and pharmaceutical applications is Karl Fischer titration. It has a high sensitivity, selectivity and accuracy. The downsides are a time-consuming offline analysis, together with the need for toxic reagents producing waste, and it suffers from poor inter-laboratory reproducibility. In this work, we present a high-performance lab-on-a-chip sensor exploiting mid-IR spectroscopy for liquid sensing. It is operating at 6.1 µm wavelength and is suitable for robust and flexible real-time in situ analysis of the residual water concentration in isopropyl alcohol. This is demonstrated in two experiments. A custom-made 60 µL flow cell is employed to measure only minute amounts of analyte in an inline configuration. In a second approach, the whole sensor is immersed into the analyte to demonstrate sensitive and rapid in situ operation on the millisecond time scale. This is confirmed by the ability for time resolved single water-droplet monitoring, while they are mixed into the liquid sample. We obtain a limit of detection between 120 ppm and 150 ppm with a concentration coverage spanning three orders of magnitude from 1.2 × 10-2%vol to 25%vol for the flow cell and 1.5 × 10-2%vol to 19%vol in the in situ configuration, respectively.

7.
Appl Spectrosc ; 76(1): 141-149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34918968

RESUMO

Mid-infrared attenuated total reflection (ATR) spectroscopy is a powerful tool for in situ monitoring of various processes. Mesoporous silica, an extensively studied material, has already been applied in sensing schemes due to its high surface area and tunable surface chemistry. However, its poor chemical stability in aqueous solutions at pH values higher than 8 and strong absorption below 1250 cm-1 limits its range of applications. To circumvent these problems, a mesoporous zirconia coating on ATR crystals was developed. Herein, the synthesis, surface modification, and characterization of ordered mesoporous zirconia films on Si wafers and Si-ATR crystals are presented. The modified coating was applied in sensing schemes using aromatic and aliphatic nitriles in aqueous solution as organic pollutants. The mesoporous zirconia coating shows strong chemical resistance when kept in alkaline solution for 72 h. The success of surface modification is confirmed using Fourier transform infrared (FT-IR) spectroscopy and contact angle measurements. Benzonitrile and valeronitrile in water are used as model analytes to evaluate the enrichment performance of the film. The experimental results are fitted using Freundlich isotherms, and enrichment factors of 162 and 26 are calculated for 10 mg L-1 benzonitrile and 25 mg L-1 valeronitrile in water, respectively. Limits of detection of 1 mg L-1 for benzonitrile and 11 mg L-1 for valeronitrile are obtained. The high chemical stability of this coating allows application in diverse fields such as catalysis with the possibility of in situ monitoring using FT-IR spectroscopy.

8.
Nat Commun ; 13(1): 4753, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963870

RESUMO

Mid-infrared spectroscopy is a sensitive and selective technique for probing molecules in the gas or liquid phase. Investigating chemical reactions in bio-medical applications such as drug production is recently gaining particular interest. However, monitoring dynamic processes in liquids is commonly limited to bulky systems and thus requires time-consuming offline analytics. In this work, we show a next-generation, fully-integrated and robust chip-scale sensor for online measurements of molecule dynamics in a liquid solution. Our fingertip-sized device utilizes quantum cascade technology, combining the emitter, sensing section and detector on a single chip. This enables real-time measurements probing only microliter amounts of analyte in an in situ configuration. We demonstrate time-resolved device operation by analyzing temperature-induced conformational changes of the model protein bovine serum albumin in heavy water. Quantitative measurements reveal excellent performance characteristics in terms of sensor linearity, wide coverage of concentrations, extending from 0.075 mg ml-1 to 92 mg ml-1 and a 55-times higher absorbance than state-of-the-art bulky and offline reference systems.


Assuntos
Dispositivos Lab-On-A-Chip , Espectrofotometria Infravermelho , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA