Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 29(6): 637-648, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31732817

RESUMO

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.


Assuntos
Basidiomycota , Micorrizas , Brasil , Raízes de Plantas , Árvores
2.
Ann Bot ; 112(2): 267-76, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23532048

RESUMO

BACKGROUND AND AIMS: Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism-environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant-soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root-soil interactions. METHODS: pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea. KEY RESULTS: Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root-soil interactions. CONCLUSIONS: This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.


Assuntos
Dióxido de Carbono/metabolismo , Cicer/metabolismo , Fabaceae/metabolismo , Imagem Óptica/métodos , Rizosfera , Triticum/metabolismo , Calibragem , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Dispositivos Ópticos , Imagem Óptica/instrumentação , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Processamento de Sinais Assistido por Computador , Software
3.
Data Brief ; 40: 107816, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35071709

RESUMO

Cereal-legume mixture is a well-known successful intercrop model for an efficient use of soil nutrients [1,2]. Effects of mineral N gradient on the acquisition of major nutrients: potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) is presented. A greenhouse pot experiment was conducted with wheat (Triticum aestivum L. cv. Lennox) and white lupin (Lupinus albus L. cv. Feodora) grown as sole crops and intercropped along a soil mineral N gradient obtained by 15N addition. Plants were harvested at flowering stage and dry weights of shoots and roots were measured. Potassium, calcium, magnesium and sulfur concentrations in shoots and roots were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

4.
Ann Bot ; 105(7): 1183-97, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20495198

RESUMO

BACKGROUND AND AIMS: Plant nutrition models do not properly account for the effects of root-induced chemical changes in the rhizosphere, e.g. pH changes, on the availability of nutrients such as phosphorus (P). As a result, they underestimate the actual P uptake, i.e. P bioavailability to the plant, in low-P soils. The present study aims at simulating root-induced chemical mechanisms controlling P nutrition in a P-limited soil. METHODS: In this work a mechanistic description for the adsorption of cations and anions by soil constituents (1pK-Triple Plane Model, ion-exchange and Nica-Donnan) was used to simulate changes induced by durum wheat (Triticum durum turgidum) in the P availability of the soil, as measured by water and CaCl2 extraction. Calcium (Ca) availability was also measured and simulated. KEY RESULTS: The simulations were found to be in close agreement with experimental data. In the rhizosphere, the goodness-of-fit required to account for the measured uptake of Ca by plants, in addition to the measured uptake of P and root-induced alkalization, were satisfactory. Calcium uptake significantly increased P availability, as assessed through water extraction, by decreasing the promoting effect of Ca adsorption on P adsorption. The study thus enabled P and Ca availability to be related to their bioavailability for durum wheat under experimental conditions. It was also shown that P was primarily adsorbed onto Fe oxides and clay minerals (kaolinite and illite) depending on soil pH. The major source of P for durum wheat nutrition was P desorbed from goethite and kaolinite. CONCLUSIONS: In addition to confirming the validity of our approach to model P availability, the present investigation suggested that in the studied soil, a novel root-induced chemical process was controlling P nutrition under P-deficient conditions, namely the uptake of Ca.


Assuntos
Fósforo/metabolismo , Raízes de Plantas/metabolismo , Triticum/metabolismo , Cálcio/metabolismo , Concentração de Íons de Hidrogênio
5.
Trends Plant Sci ; 25(4): 406-417, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964602

RESUMO

In the quest for sustainable intensification of crop production, we discuss the option of extending the root depth of crops to increase the volume of soil exploited by their root systems. We discuss the evidence that deeper rooting can be obtained by appropriate choice of crop species, by plant breeding, or crop management and its potential contributions to production and sustainable development goals. Many studies highlight the potentials of deeper rooting, but we evaluate its contributions to sustainable intensification of crop production, the causes of the limited research into deep rooting of crops, and the research priorities to fill the knowledge gaps.


Assuntos
Agricultura , Raízes de Plantas , Cruzamento , Produtos Agrícolas , Solo
7.
Earths Future ; 5(7): 730-749, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28989942

RESUMO

Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

8.
New Phytol ; 163(1): 177-185, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873794

RESUMO

• A differential effect of ectomycorrhizal symbiosis on soil P mobilization and host P nutrition is shown after culture of Pinus pinaster associated with Hebeloma cylindrosporum and Rhizopogon roseolus, poor and good oxalate/proton producers, respectively. • Plants were grown in minirhizoboxes with a thin layer of a Mediterranean soil with a low level of easily available P. This soil was supplemented, or not, with inorganic P and/or CaCO3 . The fungal efficiency on P mobilization and host mineral nutrition was quantified after a 3-month culture period. • R. roseolus had a strong effect on the mobilization of poorly available P, whereas H. cylindrosporum had no effect. However, CaCO3 suppressed the positive effect of R. roseolus. Hydroxyapatite had the greatest effect on growth and P nutrition of nonmycorrhizal plants. With soluble P addition, both ectomycorrhizal species improved shoot P concentrations. • The relationship between soil available P and shoot P concentrations enabled us to separate the fungal effects into two categories, the chemical actions and the soil exploration, explaining the positive effect of ectomycorrhizal symbiosis on P. pinaster P nutrition.

9.
Nat Commun ; 4: 2934, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24343268

RESUMO

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.


Assuntos
Ecossistema , Nitrogênio , Fósforo , Carbono , Eutrofização , Humanos
10.
Environ Pollut ; 158(10): 3330-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20719419

RESUMO

The ability of the free ion activity model (FIAM), the terrestrial biotic ligand model (TBLM), the diffusive gradients in thin films (DGT) technique and a plant-based biotest, the RHIZOtest, to predict root copper (Cu) concentration in field-grown durum wheat (Triticum turgidum durum L.) was assessed on 44 soils varying in pH (3.9-7.8) and total Cu (32-184 mg kg(-1)). None of the methods adequately predicted root Cu concentration, which was mainly correlated with total soil Cu. Results from DGT measurements and even more so FIAM prediction were negatively correlated with soil pH and over-estimated root Cu concentration in acidic soils. TBLM implementation improved numerically FIAM prediction but still failed to predict adequately root Cu concentration as the TBLM formalism did not considered the rhizosphere alkalisation as observed in situ. In contrast, RHIZOtest measurements accounted for rhizosphere alkalisation and were mainly correlated with total soil Cu.


Assuntos
Cobre/metabolismo , Monitoramento Ambiental/métodos , Rizoma/metabolismo , Poluentes do Solo/metabolismo , Triticum/metabolismo , Rizosfera , Solo/química
11.
Environ Pollut ; 157(12): 3363-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19608319

RESUMO

We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl(2)-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH < 4.4, CaCl(2)-Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH < 4.8, while acidification occurred at greater pH. This explained the changes of CaCl(2)-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu.


Assuntos
Brassica napus/metabolismo , Cobre/metabolismo , Rizosfera , Poluentes do Solo/metabolismo , Solo/química , Ácidos/análise , Disponibilidade Biológica , Brassica napus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
12.
New Phytol ; 168(2): 293-303, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16219069

RESUMO

The rhizosphere differs from the bulk soil in a range of biochemical, chemical and physical processes that occur as a consequence of root growth, water and nutrient uptake, respiration and rhizodeposition. These processes also affect microbial ecology and plant physiology to a considerable extent. This review concentrates on two features of this unique environment: rhizosphere geometry and heterogeneity in both space and time. Although it is often depicted as a soil cylinder of a given radius around the root, drawing a boundary between the rhizosphere and bulk soil is an impossible task because rhizosphere processes result in gradients of different sizes. For instance, because of diffusional constraints, root uptake can result in a depletion zone extending <1 mm for phosphate to several centimetres for nitrate, while respiration may affect the bulk of the soil. Rhizosphere processes are responsible for spatial and temporal heterogeneities in the soil, although these are sometimes difficult to distinguish from intrinsic soil heterogeneity. A further complexity is that these processes are regulated by plants, microbial communities and soil constituents, and their many interactions. Novel in situ techniques and modelling will help in providing a holistic view of rhizosphere functioning, which is a prerequisite for its management and manipulation.


Assuntos
Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Ecossistema , Microscopia Eletrônica de Varredura , Modelos Biológicos , Micorrizas/citologia , Fosfatos/metabolismo , Solo/análise , Microbiologia do Solo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA