Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 17(9): 2548-2553, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762058

RESUMO

The direct addition of water to a carbon-carbon double bond remains a challenge, but such a reaction is essential for the development of efficient catalysts that enable direct access to chiral alcohols. We now report on the enantioselective hydration of α,ß-unsaturated ketones, catalyzed by modular DNA-based hybrid catalysts, affording ß-hydroxy ketones with up to 87% enantiomeric excess. Oligonucleotides containing an intrastrand bipyridine ligand were readily synthesized by a straightforward process using an automated solid-phase synthesis. A library of DNA-based hybrid catalysts could be systematically generated based on the composition of nucleobases, and the incorporation of a binding ligand and a nonbinding steric moiety. This study demonstrates the potential of modular DNA-based hybrid catalysts as a toolbox to accomplish the challenging enantioselective hydration reaction.


Assuntos
2,2'-Dipiridil/química , DNA/química , Cetonas/química , Água/química , 2,2'-Dipiridil/síntese química , Sequência de Bases , Catálise , DNA/síntese química , Ligantes , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Estereoisomerismo
2.
Sensors (Basel) ; 18(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510585

RESUMO

Continued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field. The immobilization of the maximum amounts can be obtained by the application of the AC voltage of 80 Vpp, 20 Hz both for His-tagged Green Fluorescent Protein (GFP) and Discosoma sp. Red Fluorescent Protein (DsRed), used as model proteins. The amounts of the immobilized His-tagged GFP and DsRed were approximately seven-fold higher than that in the absence of the application of low-frequency AC electric field. Furthermore, the positively and negatively charged His-tagged GFP at acidic and alkaline pH were immobilized by applying of low-frequency AC electric field, whereas the non-charged His-tagged GFP at the pH corresponding to its isoelectric point (pI) was not immobilized. Therefore, unless the pH is equal to pI, the immobilization of electrically charged proteins was strongly enhanced through electrostatic transport and subsequent molecular diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA