Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2215722120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279264

RESUMO

The mixed-valent spinel LiV2O4 is known as the first oxide heavy-fermion system. There is a general consensus that a subtle interplay of charge, spin, and orbital degrees of freedom of correlated electrons plays a crucial role in the enhancement of quasi-particle mass, but the specific mechanism has remained yet elusive. A charge-ordering (CO) instability of V3+ and V4+ ions that is geometrically frustrated by the V pyrochlore sublattice from forming a long-range CO down to T = 0 K has been proposed as a prime candidate for the mechanism. Here, we uncover the hidden CO instability by applying epitaxial strain on single-crystalline LiV2O4 thin films. We find a crystallization of heavy fermions in a LiV2O4 film on MgO, where a charge-ordered insulator comprising of a stack of V3+ and V4+ layers along [001], the historical Verwey-type ordering, is stabilized by the in-plane tensile and out-of-plane compressive strains from the substrate. Our discovery of the [001] Verwey-type CO, together with previous realizations of a distinct [111] CO, evidence the close proximity of the heavy-fermion state to degenerate CO states mirroring the geometrical frustration of the V pyrochlore lattice, which supports the CO instability scenario for the mechanism behind the heavy-fermion formation.

2.
Inorg Chem ; 63(9): 4001-4010, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381575

RESUMO

Heteroanionic compounds, which contain two or more types of anions, have emerged as a promising class of materials with diverse properties and functionalities. In this paper, I review the experimental findings on Ca3ReO5Cl2 and related compounds that exhibit remarkable pleochroism and novel quantum magnetism. I discuss how the heteroanionic coordination affects the optical and magnetic properties by modulating the d-orbital states of the transition metal ions. Subsequently, I compare these materials with other heteroanionic and monoanionic compounds and highlight the potential of A3MO5X2 materials for future exploration of materials and phenomena.

3.
Inorg Chem ; 62(35): 14207-14215, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602725

RESUMO

The high-entropy concept was applied to the synthesis of transition-metal antimonides, M1-xPtxSb (M = equimolar Ru, Rh, Pd, and Ir). High-entropy antimonide samples crystallized in a pseudo-hexagonal NiAs-type crystal structure with a P63/mmc space group were successfully synthesized through a conventional solid-state reaction and subsequent quenching. A detailed investigation of the composition and equilibration conditions confirmed the reversible phase transition between a multiphase state at low temperature and an entropy-driven single-phase solid solution at high temperatures. Electrical resistivity, magnetization, and heat capacity measurements of single-phase M1-xPtxSb (x = 0.2) samples revealed a bulk superconducting transition at 2.15(2) K. This study demonstrates that the high-entropy concept provides numerous opportunities for the discovery of new functional materials such as superconductors.

4.
Inorg Chem ; 62(5): 2116-2127, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690346

RESUMO

Reductive fluorination, which entails the substitution of O2- from oxide compounds with F- from fluoropolymers, is considered a practical approach for preparing transition-metal oxyfluorides. However, the current understanding of the fundamental reaction paths remains limited due to the analytical complexities posed by high-temperature reactions in glassware. Therefore, to expand this knowledgebase, this study investigates the reaction mechanisms behind the reductive fluorination of WO3 using polytetrafluoroethylene (PTFE) in an Ni reactor. Here, we explore varied reaction conditions (temperature, duration, and F/W ratio) to suppress the formation of carbon byproducts, minimize the dissipation of fluorine-containing tungsten (VI) compounds, and achieve a high fluorine content. The gas-solid reaction paths are analyzed using infrared spectroscopy, which revealed tetrafluoroethylene (C2F4), hexafluoropropene (C3F6), and iso-octafluoroisobutene (i-C4F8) to be the reactive components in the PTFE-decomposition gas during the reactions with WO3 at 500 °C. CO2 and CO are further identified as gaseous byproducts of the reaction evincing that the reaction is prompted by difluorocarbene (:CF2) formed after the cleavage of C═C bonds in i-C4F8, C3F6, and C2F4 upon contact with the WO3 surface. The solid-solid reaction path is established through a reaction between WO3 and WO3-xFx where solid-state diffusion of O2- and F- is discerned at 500 °C.

5.
J Am Chem Soc ; 144(39): 17857-17864, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36108143

RESUMO

Some inorganic solids undergo phase transitions that result in the formation of "molecules" in their crystalline frameworks, which are frequently accompanied by dramatic changes in physical properties; the metal-insulator transition (MIT) in vanadium dioxide, for instance, is accompanied by the formation of dimer molecules with conventional two-center-two-electron bonding. We have discovered the creation of a linear ruthenium trimer with atypical three-center-four-electron bonding in ruthenium monophosphide at its MIT. Our detailed structural investigation and electronic structure calculations reveal that charge transfer from polymerized phosphorous to ruthenium automatically tunes the electron density to precisely four per trimer at the MIT, with all conduction electrons present at high temperatures being trapped by the trimer's molecular orbitals at low temperatures. Our results demonstrate that molecules are essential even in solid crystals, as they impact their electronic properties.

6.
Phys Chem Chem Phys ; 24(39): 24203-24211, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168894

RESUMO

Charge transfer (CT) luminescence of different types of polyhedra, [WO5]4- in Ca3WO5Cl2 and [WO6]6- in Ca3WO6, is characterized by spectroscopic experiments and ab initio calculations. According to the geometry optimization, W6+ ions form five-fold [WO5]4- square pyramids in Ca3WO5Cl2 because of a large interatomic distance between W6+ and Cl- of 3.266 Å. The analysis of the density of electronic states reveals the ionic character of Cl- ions to the W6+ ions in the Ca3WO5Cl2 lattice, resulting in the observed broad luminescence band peak at 488 nm of the single-crystal Ca3WO5Cl2 sample being assigned to the CT transition in the [WO5]4- square pyramid. Compared with the [WO6]6- octahedron in Ca3WO6, the [WO5]4- square pyramid shows an inconsistent CT energy shift: higher CT absorption and lower luminescence energies. The larger bandgap brings about higher absorption energy due to the structural and compositional features of the orthorhombic Ca3WO5Cl2. The redshifted CT luminescence band and small activation energy for the thermal quenching of the Ca3WO5Cl2 sample are explained, assuming that the CT states of the anisotropic [WO5]4- square pyramid take a larger offset in the configurational coordinate diagram than the [WO6]6- octahedron.

7.
Inorg Chem ; 59(14): 10025-10033, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32584564

RESUMO

We report the synthesis, crystal structure, and magnetic properties of the two new quantum antiferromagnets A3ReO5Cl2 (A = Sr, Ba). The crystal structure is isostructural with the mineral pinalite Pb3WO5Cl2, in which the Re6+ ion is square pyramidally coordinated by five oxide atoms and forms an anisotropic triangular lattice (ATL) made of S = 1/2 spins. The magnetic interactions J and J' in the ATL are estimated from magnetic susceptibilities to be 19.5 (44.9) and 9.2 (19.3) K, respectively, with J'/J = 0.47 (0.43) for A = Ba (Sr). For each compound, the heat capacity at low temperatures shows a large T-linear component with no signature of long-range magnetic order above 2 K, which suggests a gapless spin liquid state of one-dimensional character of the J chains in spite of the significantly large J' couplings. This is a consequence of one-dimensionalization by geometrical frustration in the ATL magnet; a similar phenomenon has been observed in two compounds with slightly smaller J'/J values: Cs2CuCl4 (J'/J = 0.3) and the related compound Ca3ReO5Cl2 (0.32). Our findings demonstrate that 5d mixed-anion compounds provide a unique opportunity to explore novel quantum magnetism.

8.
Inorg Chem ; 58(19): 12911-12917, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31503462

RESUMO

Single crystals of a novel Na-Pt-Si ternary compound, Na3Pt10Si5, were synthesized by heating the constituent elements at 1423 K. It crystallizes in a non-centrosymmetric trigonal structure of space group R32 (Z = 3) with lattice constants of a = 10.1536(3) Å and c = 10.1539(3) Å at 300 K. The structure consists of a three-dimensional framework made of Pt and Si atoms, and the Na atoms are contained in the tunnels of the framework. The large magnitude and the temperature dependence of the atomic displacement parameter of the Na site reveal a large thermal vibration indicative of a "rattling" motion of Na atoms in the oversized tunnel. The electronic structure calculations explain the observed metallic properties on the basis of the covalent bonds between the Pt and Si atoms in the framework and the ionic bonding of the Na atoms to the framework. A type II superconductivity with a transition temperature of 2.9 K and an upper critical field of 2.5 kOe are observed for a polycrystalline sintered bulk sample of Na3Pt10Si5 prepared by heating at 1353 K in Na vapor. Heat capacity measurements reveal a strong coupling superconductivity that is probably caused by an electron-phonon interaction enhanced by the rattling motion of the Na atoms.

9.
J Am Chem Soc ; 139(31): 10784-10789, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714681

RESUMO

Transition metal compounds sometimes exhibit attractive colors. Here, we report a new oxychloride, Ca3ReO5Cl2, that shows unusually distinct pleochroism; that is, the material exhibits different colors depending on the viewing direction. This pleochroism is a consequence of the coincidental complex crystal field splitting of the 5d orbitals of the Re6+ ion in a square-pyramidal coordination of low symmetry in the energy range of the visible spectrum. Since the relevant d-d transitions show characteristic polarization dependence according to the optical selection rule, the orbital states are "visible" in Ca3ReO5Cl2.

10.
Phys Rev Lett ; 110(16): 166402, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679626

RESUMO

A paramagnetic metal to nonmagnetic insulator transition at T(MIT)=210 K is reported for the ß-pyrochlore oxide CsW(2)O(6), accompanied by a first order structural transition that creates <110> oriented chains in the pyrochlore lattice. Comparison of CsW(2)O(6), which has 1 electron per 2 W sites, to the fully d(0) analog CsTaWO(6) shows that the transitions are electronically driven. Corefinement of high resolution synchrotron x-ray and neutron diffraction data shows that the structural distortion that creates the W chains cannot be attributed to simple charge or orbital ordering. Density functional theory calculations suggest that the phase transition is driven by a sharply peaked electronic density of states near the Fermi energy in the cubic ß-pyrochlore phase. A further electronic instability is required to create the insulating ground state.

11.
J Phys Condens Matter ; 35(40)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37369230

RESUMO

Quantum oscillations (QOs) in magnetic torque and electrical resistivity were measured to investigate the electronic structure ofß-ReO2, a candidate hourglass nodal chain (NC) metal (Dirac loop chain metal). All the de Haas-van Alphen oscillation branches measured at 30 mK in magnetic fields of up to 17.5 T were consistent with first-principles calculations predicting four Fermi surfaces (FSs). The small-electron FS of the four FSs exhibited a very small cyclotron mass, 0.059 times that of the free electrons, which is likely related to the linear dispersion of the energy band. The consistency between the QO results and band calculations indicates the presence of the hourglass NC predicted forß-ReO2in the vicinity of the Fermi energy.

12.
Inorg Chem ; 51(19): 10095-104, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22946468

RESUMO

The synthesis of reduced coordination (less than 6), unchelated manganese oxygen cluster systems is described. Addition of phenols to Mn(NR(2))(2) (R = SiMe(3)) results in protolytic amide ligand replacement, and represents the primary entry into the described chemistry. Addition of PhOH to Mn(NR(2))(2) results in the formation of the heteroleptic dimer Mn(2)(µ-OPh)(2)(NR(2))(2)(THF)(2) (1). Usage of the sterically larger 2,6-diphenylphenol (Ph(2)C(6)H(3)OH) as the ligand source results in the formation of a 3-coordinate heteroleptic dimer without THF coordination, Mn(2)(µ-OC(6)H(3)Ph(2))(2)(NR(2))(2) (2). Attempts to generate 2 in the presence of THF or Et(2)O resulted in isolation of monomeric Mn(OC(6)H(3)Ph(2))(2)L(2) (3, L = THF, Et(2)O). Use of the sterically intermediate 2,4,6-trimethylphenol (MesOH) resulted in formation of the linear trinuclear cluster Mn(3)(µ-OMes)(4)(NR(2))(2)(THF)(2) (4). Reaction of Mn(NR(2))(2) with PhOH in the presence of water, or reaction of 1 with water, results in the formation of a 5-coordinate, unchelated Mn-O cluster, Mn(8)(µ(5)-O)(2)(µ-OPh)(12)(THF)(6) (5). Preparation, structures, steric properties, and magnetic properties are presented. Notably, complex 5 exhibits a temperature-dependent phase transition between a 4-spin paramagnetic system at low temperature, and an 8-spin paramagnetic system at room temperature.

13.
J Phys Condens Matter ; 51(3)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36332269

RESUMO

The 5dpyrochlore oxide superconductor Cd2Re2O7(CRO) has attracted significant interest as a spin-orbit-coupled metal (SOCM) that spontaneously undergoes a phase transition to an odd-parity multipole phase by breaking the spatial inversion symmetry due to the Fermi liquid instability caused by strong spin-orbit coupling. Despite the significance of structural information during the transition, previous experimental results regarding lattice deformation have been elusive. We have conducted ultra-high resolution synchrotron radiation x-ray diffraction experiments on a high-quality CRO single crystal. The temperature-dependent splitting of the 0 0 16 and 0 0 14 reflections, which are allowed and forbidden, respectively, in the high-temperature cubic phase I (space groupFd-3m), has been clearly observed and reveals the following significant facts: inversion symmetry breaking and tetragonal distortion occur simultaneously atTs1= 201.5(1) K; the previously believed first-order transition between phase II (I-4m2) and phase III (I4122) atTs2∼120 K consists of two close second-order transitions atTs2= 115.4(1) K andTs3∼ 100 K; there is a new orthorhombic phase XI (F222) in between. The order parameters (OPs) of these continuous transitions are uniquely represented by a two-dimensional irreducible representationEuof theOhpoint group, and the OPs of phase XI are a linear combination of those of phases II and III. Each phase is believed to correspond to a distinct odd-parity multipole order, and the complex successive transitions observed may be the result of an electronic phase transition that resolves the Fermi liquid instability in the SOCM.

14.
J Phys Condens Matter ; 34(13)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34996061

RESUMO

Semimetallic osmium pyrochlore oxide Cd2Os2O7undergoes a magnetic transition to an all-in-all-out (AIAO)-type order at 227 K, followed by a crossover to an AIAO insulator at around 210 K. Here, we studied the isostructural and isoelectronic compound Hg2Os2O7through thermodynamic measurements, muon spin rotation (µSR) spectroscopy and neutron diffraction experiments. A similar magnetic transition, probably to an AIAO-type order, was observed at 88 K, while the resistivity showed a decrease at the transition and remained metallic down to 2 K. Thus, the ground state of Hg2Os2O7is most likely an AIAO semimetal, which is analogous to the intermediate-temperature state of Cd2Os2O7. Hg2Os2O7exists on the verge of the metal-insulator boundary on the metal side and provides an excellent platform for studying the electronic instability of 5delectrons with moderate electron correlations and strong spin-orbit interactions.

15.
J Phys Condens Matter ; 33(13)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429372

RESUMO

The synthesis and physical properties of the double perovskite (DP) compound Ba2CdReO6with the 5d1electronic configuration are reported. Three successive phases originating from a spin-orbit-entangledJeff= 3/2 state, confirmed by a reduced effective magnetic moment of 0.72 µB, were observed upon cooling. X-ray diffraction measurements revealed a structural transition from a high-temperature cubic structure to a low-temperature tetragonal structure atTs= 170 K, below which theJeff= 3/2 state was preserved. Magnetization, heat capacity, and thermal expansion measurements showed two more electronic transitions to a possible quadrupole ordered state atTq= 25 K and an antiferromagnetic order of dipoles with a ferromagnetic moment of ∼0.2 µBatTm= 12 K. These properties were compared with those of the DP's sister compounds Ba2BReO6(B= Mg, Zn, and Ca) and the chemical trend is discussed in terms of the mean-field theory for spin-orbit-coupled 5delectrons (2010 Chenet al Phys. Rev. B82174440). The DP Ba2BReO6compounds provide a unique opportunity for a systematic investigation of symmetry breaking in the presence of multipolar degrees of freedom.

16.
RSC Adv ; 8(73): 42025-42031, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558817

RESUMO

Four anti-perovskite-type compounds, ZnNNi3, ZnCNi3, SnNCo3, and SnCCo3, are synthesised through reactions between metal oxides and organic compound melamine (C3H6N6). ZnNNi3 and ZnCNi3 are selectively synthesised by choosing different reaction temperatures and nominal oxide-to-melamine ratios. SnNCo3 is synthesised for the first time by this melamine method. Resistivity, magnetisation, and heat capacity measurements reveal that SnNCo3 is a correlated metal with a high density of states at the Fermi level. The results demonstrate that this feasible synthetic route using melamine is useful in the search for complex metal carbides and nitrides toward novel functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA