Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 173(2): 984-997, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923989

RESUMO

Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates.


Assuntos
Carboidratos/farmacologia , Nicotiana/metabolismo , Nicotiana/fisiologia , Polinização/efeitos dos fármacos , beta-Frutofuranosidase/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Hexoses/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/enzimologia , Tubo Polínico/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Nicotiana/enzimologia , Nicotiana/genética , beta-Frutofuranosidase/antagonistas & inibidores
2.
Plant Cell Physiol ; 58(4): 691-701, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339807

RESUMO

Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling.


Assuntos
Arabidopsis/fisiologia , Metabolismo dos Carboidratos , Germinação/fisiologia , Oligossacarídeos/metabolismo , Pólen/fisiologia , Arabidopsis/efeitos dos fármacos , Carboidratos , Germinação/efeitos dos fármacos , Hexoses/metabolismo , Hexoses/farmacologia , Manose/metabolismo , Manose/farmacologia , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Pólen/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia
3.
Phytochemistry ; 68(6): 824-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17286993

RESUMO

Modern biotechnology has developed powerful tools for genetic engineering and flower colours are an excellent object to study possibilities and limitations of engineering strategies. Osteospermum hybrida became a popular ornamental plant within the last 20 years. Many cultivars display rose to lilac flower colours mainly based on delphinidin-derived anthocyanins. The predominant synthesis of delphinidin derivatives is referred to a strong endogenous flavonoid 3',5'-hydroxylase (F3'5'H) activity. Furthermore, since dihydroflavonol 4-reductase (DFR) of Osteospermum does not convert dihydrokaempferol (DHK) to leucopelargonidin, synthesis of pelargonidin-based anthocyanins is naturally not realised. In order to redirect anthocyanin biosynthesis in Osteospermum towards pelargonidin derivatives, we introduced cDNAs coding for DFRs which efficiently convert DHK to LPg. But neither the expression of Gerbera hybrida DFR nor of Fragaria x ananassa DFR - the latter is characterised by an unusual high substrate preference for DHK - altered anthocyanin composition in flowers of transgenic plants. However, chemical inhibition of F3'5'H activity in ray florets of dfr transgenic plants resulted in the accumulation of pelargonidin derivatives. Accordingly, retransformation of a transgenic plant expressing Gerbera DFR with a construct for RNAi-mediated suppression of F3'5'H activity resulted in double transgenic plants accumulating predominantly pelargonidin derivatives in flowers.


Assuntos
Oxirredutases do Álcool/metabolismo , Antocianinas/biossíntese , Asteraceae/metabolismo , Oxirredutases do Álcool/genética , Antocianinas/química , Antocianinas/metabolismo , Asteraceae/enzimologia , Asteraceae/genética , Chalconas/química , Chalconas/metabolismo , DNA Complementar/genética , Flavonas/química , Flavonas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Flavonóis/química , Flavonóis/metabolismo , Flores/genética , Flores/metabolismo , Vetores Genéticos/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA