Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Cell ; 167(5): 1430-1430.e1, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863253

RESUMO

This SnapShot depicts key sequencing-based methods used in the analysis of epigenomes, including (1)bisulfite sequencing, (2) chromatin immunoprecipiation sequencing, (3) determination of open chromatin, and (4) 3D chromatin capture.


Assuntos
Imunoprecipitação da Cromatina , Epigenômica/métodos , 5-Metilcitosina/metabolismo , Cromossomos/química , Metilação de DNA
2.
Cell ; 167(5): 1145-1149, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863232

RESUMO

The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic datasets to gain insights in the epigenetic control of cell states relevant for human health and disease. PAPERCLIP.


Assuntos
Epigênese Genética , Epigenômica , Genoma Humano , Metilação de DNA , Bases de Dados Genéticas , Doença/genética , Código das Histonas , Humanos
4.
Am J Pathol ; 193(4): 456-473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657718

RESUMO

Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Carcinogênese , Proteína SMARCB1/genética
5.
Nature ; 549(7671): 227-232, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28854171

RESUMO

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Assuntos
Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais/efeitos dos fármacos , Células Clonais/patologia , Epigênese Genética , Feminino , Glioblastoma/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo , Processos Estocásticos
6.
Blood ; 136(24): 2764-2773, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301029

RESUMO

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.


Assuntos
Regulação Leucêmica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Transplante de Neoplasias
7.
Blood ; 135(25): 2235-2251, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32384151

RESUMO

Aging is associated with significant changes in the hematopoietic system, including increased inflammation, impaired hematopoietic stem cell (HSC) function, and increased incidence of myeloid malignancy. Inflammation of aging ("inflammaging") has been proposed as a driver of age-related changes in HSC function and myeloid malignancy, but mechanisms linking these phenomena remain poorly defined. We identified loss of miR-146a as driving aging-associated inflammation in AML patients. miR-146a expression declined in old wild-type mice, and loss of miR-146a promoted premature HSC aging and inflammation in young miR-146a-null mice, preceding development of aging-associated myeloid malignancy. Using single-cell assays of HSC quiescence, stemness, differentiation potential, and epigenetic state to probe HSC function and population structure, we found that loss of miR-146a depleted a subpopulation of primitive, quiescent HSCs. DNA methylation and transcriptome profiling implicated NF-κB, IL6, and TNF as potential drivers of HSC dysfunction, activating an inflammatory signaling relay promoting IL6 and TNF secretion from mature miR-146a-/- myeloid and lymphoid cells. Reducing inflammation by targeting Il6 or Tnf was sufficient to restore single-cell measures of miR-146a-/- HSC function and subpopulation structure and reduced the incidence of hematological malignancy in miR-146a-/- mice. miR-146a-/- HSCs exhibited enhanced sensitivity to IL6 stimulation, indicating that loss of miR-146a affects HSC function via both cell-extrinsic inflammatory signals and increased cell-intrinsic sensitivity to inflammation. Thus, loss of miR-146a regulates cell-extrinsic and -intrinsic mechanisms linking HSC inflammaging to the development of myeloid malignancy.


Assuntos
Envelhecimento/genética , Inflamação/genética , Interleucina-6/fisiologia , Leucemia Mieloide Aguda/etiologia , MicroRNAs/genética , Fator de Necrose Tumoral alfa/fisiologia , Adolescente , Adulto , Idoso , Envelhecimento/imunologia , Animais , Diferenciação Celular , Autorrenovação Celular , Senescência Celular , Citocinas/biossíntese , Metilação de DNA , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/fisiopatologia , Interleucina-6/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , Pessoa de Meia-Idade , NF-kappa B/fisiologia , Análise de Célula Única , Transcriptoma , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto Jovem
8.
PLoS Comput Biol ; 16(9): e1008270, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32966276

RESUMO

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.


Assuntos
Metilação de DNA , Análise de Célula Única , Análise por Conglomerados , Ilhas de CpG , Humanos , Probabilidade , Análise de Sequência de DNA/métodos
9.
Nature ; 528(7581): 267-71, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26633636

RESUMO

Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinoma Ductal de Mama/fisiopatologia , Transformação Celular Neoplásica , Glândulas Mamárias Humanas/fisiopatologia , Animais , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Linhagem da Célula/genética , Células Cultivadas , Código de Barras de DNA Taxonômico , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Lentivirus/genética , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Endogâmicos , Camundongos SCID , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Fatores de Tempo , Transdução Genética , Proteínas ras/genética
10.
Hepatology ; 70(4): 1360-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30933372

RESUMO

Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.


Assuntos
Metilação de DNA/genética , Epigenômica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Fígado/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade , Células-Tronco/citologia , Células-Tronco/metabolismo , Ativação Transcricional/genética
11.
Nucleic Acids Res ; 46(5): 2459-2478, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361176

RESUMO

FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25-DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases.


Assuntos
Ciclo Celular , Microtúbulos/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Linhagem Celular , DNA/metabolismo , Instabilidade Genômica , Humanos , Mitose , Peptidilprolil Isomerase/fisiologia , Fosforilação , Polimerização , Proteína Quinase C/metabolismo , Proteínas de Ligação a Tacrolimo/fisiologia
12.
Nature ; 497(7449): 378-82, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23644459

RESUMO

MicroRNAs (miRNAs) show differential expression across breast cancer subtypes, and have both oncogenic and tumour-suppressive roles. Here we report the miRNA expression profiles of 1,302 breast tumours with matching detailed clinical annotation, long-term follow-up and genomic and messenger RNA expression data. This provides a comprehensive overview of the quantity, distribution and variation of the miRNA population and provides information on the extent to which genomic, transcriptional and post-transcriptional events contribute to miRNA expression architecture, suggesting an important role for post-transcriptional regulation. The key clinical parameters and cellular pathways related to the miRNA landscape are characterized, revealing context-dependent interactions, for example with regards to cell adhesion and Wnt signalling. Notably, only prognostic miRNA signatures derived from breast tumours devoid of somatic copy-number aberrations (CNA-devoid) are consistently prognostic across several other subtypes and can be validated in external cohorts. We then use a data-driven approach to seek the effects of miRNAs associated with differential co-expression of mRNAs, and find that miRNAs act as modulators of mRNA-mRNA interactions rather than as on-off molecular switches. We demonstrate such an important modulatory role for miRNAs in the biology of CNA-devoid breast cancers, a common subtype in which the immune response is prominent. These findings represent a new framework for studying the biology of miRNAs in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Algoritmos , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Feminino , Seguimentos , Perfilação da Expressão Gênica , Genoma Humano/genética , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
13.
Nature ; 500(7461): 222-6, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23812591

RESUMO

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(II) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.


Assuntos
Ácido Ascórbico/farmacologia , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Antioxidantes/farmacologia , Blastocisto/metabolismo , Linhagem Celular , Meios de Cultura/química , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(30): 8484-9, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27412862

RESUMO

The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.


Assuntos
Genoma Humano/genética , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Célula Única/métodos , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
15.
Haematologica ; 103(2): 246-255, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217774

RESUMO

Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/etiologia , MicroRNAs/antagonistas & inibidores , Proteína Meis1/farmacologia , Animais , Carcinogênese/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , MicroRNAs/metabolismo
16.
BMC Genomics ; 18(1): 515, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679365

RESUMO

BACKGROUND: RNA-Sequencing (RNA-seq) is now commonly used to reveal quantitative spatiotemporal snapshots of the transcriptome, the structures of transcripts (splice variants and fusions) and landscapes of expressed mutations. However, standard approaches for library construction typically require relatively high amounts of input RNA, are labor intensive, and are time consuming. METHODS: Here, we report the outcome of a systematic effort to optimize and streamline steps in strand-specific RNA-seq library construction. RESULTS: This work has resulted in the identification of an optimized messenger RNA isolation protocol, a potent reverse transcriptase for cDNA synthesis, and an efficient chemistry and a simplified formulation of library construction reagents. We also present an optimization of bead-based purification and size selection designed to maximize the recovery of cDNA fragments. CONCLUSIONS: These developments have allowed us to assemble a rapid high throughput pipeline that produces high quality data from amounts of total RNA as low as 25 ng. While the focus of this study is on RNA-seq sample preparation, some of these developments are also relevant to other next-generation sequencing library types.


Assuntos
Biblioteca Gênica , RNA Mensageiro , Análise de Sequência de RNA/métodos , Manejo de Espécimes/normas , Células HL-60 , Humanos
17.
Nature ; 476(7360): 298-303, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796119

RESUMO

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


Assuntos
Histonas/metabolismo , Linfoma não Hodgkin/genética , Mutação/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Humano/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Perda de Heterozigosidade/genética , Linfoma Folicular/enzimologia , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Linfoma não Hodgkin/enzimologia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
18.
N Engl J Med ; 368(22): 2059-74, 2013 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-23634996

RESUMO

BACKGROUND: Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS: We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS: AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS: We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Adulto , Ilhas de CpG , Metilação de DNA , Epigenômica , Feminino , Expressão Gênica , Fusão Gênica , Genoma Humano , Humanos , Leucemia Mieloide Aguda/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Nucleofosmina , Análise de Sequência de DNA/métodos
19.
Genome Res ; 23(9): 1541-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804401

RESUMO

Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity to map complete DNA methylomes. These include whole-genome bisulfite sequencing (WGBS, MethylC-seq, or BS-seq), reduced-representation bisulfite sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and MRE-seq. These methods yield largely comparable results but differ significantly in extent of genomic CpG coverage, resolution, quantitative accuracy, and cost, at least while using current algorithms to interrogate the data. None of these existing methods provides single-CpG resolution, comprehensive genome-wide coverage, and cost feasibility for a typical laboratory. We introduce methylCRF, a novel conditional random fields-based algorithm that integrates methylated DNA immunoprecipitation (MeDIP-seq) and methylation-sensitive restriction enzyme (MRE-seq) sequencing data to predict DNA methylation levels at single-CpG resolution. Our method is a combined computational and experimental strategy to produce DNA methylomes of all 28 million CpGs in the human genome for a fraction (<10%) of the cost of whole-genome bisulfite sequencing methods. methylCRF was benchmarked for accuracy against Infinium arrays, RRBS, WGBS sequencing, and locus-specific bisulfite sequencing performed on the same human embryonic stem cell line. methylCRF transformation of MeDIP-seq/MRE-seq was equivalent to a biological replicate of WGBS in quantification, coverage, and resolution. We used conventional bisulfite conversion, PCR, cloning, and sequencing to validate loci where our predictions do not agree with whole-genome bisulfite data, and in 11 out of 12 cases, methylCRF predictions of methylation level agree better with validated results than does whole-genome bisulfite sequencing. Therefore, methylCRF transformation of MeDIP-seq/MRE-seq data provides an accurate, inexpensive, and widely accessible strategy to create full DNA methylomes.


Assuntos
Algoritmos , Ilhas de CpG , Metilação de DNA , Genoma Humano , Análise de Sequência de DNA/métodos , Software , Enzimas de Restrição do DNA/química , Humanos
20.
Genome Res ; 23(9): 1522-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804400

RESUMO

DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and tissue-specific gene expression. Sequencing-based DNA methylation profiling provides an unprecedented opportunity to map and compare complete DNA methylomes. This includes one of the most widely applied technologies for measuring DNA methylation: methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq), coupled with a complementary method, methylation-sensitive restriction enzyme sequencing (MRE-seq). A computational approach that integrates data from these two different but complementary assays and predicts methylation differences between samples has been unavailable. Here, we present a novel integrative statistical framework M&M (for integration of MeDIP-seq and MRE-seq) that dynamically scales, normalizes, and combines MeDIP-seq and MRE-seq data to detect differentially methylated regions. Using sample-matched whole-genome bisulfite sequencing (WGBS) as a gold standard, we demonstrate superior accuracy and reproducibility of M&M compared to existing analytical methods for MeDIP-seq data alone. M&M leverages the complementary nature of MeDIP-seq and MRE-seq data to allow rapid comparative analysis between whole methylomes at a fraction of the cost of WGBS. Comprehensive analysis of nineteen human DNA methylomes with M&M reveals distinct DNA methylation patterns among different tissue types, cell types, and individuals, potentially underscoring divergent epigenetic regulation at different scales of phenotypic diversity. We find that differential DNA methylation at enhancer elements, with concurrent changes in histone modifications and transcription factor binding, is common at the cell, tissue, and individual levels, whereas promoter methylation is more prominent in reinforcing fundamental tissue identities.


Assuntos
Algoritmos , Metilação de DNA , Genoma Humano , Análise de Sequência de DNA/métodos , Interpretação Estatística de Dados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA