Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711915

RESUMO

Repairing peripheral nerve injuries remains a clinical challenge. To enhance nerve regeneration and functional recovery, the use of auxiliary implantable biomaterial conduits has become widespread. After implantation, there is currently no way to assess the location or function of polymeric biomedical devices, as they cannot be easily differentiated from surrounding tissue using clinical imaging modalities. Adding nanoparticle contrast agents into polymer matrices can introduce radiopacity and enable imaging using computed tomography (CT), but radiopacity must be balanced with changes in material properties that impact device function and biological response. In this study radiopacity was introduced to porous films of polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) 50:50 and 85:15 with 0-40wt% biocompatible tantalum oxide (TaO x ) nanoparticles. To achieve radiopacity, at least 5wt% TaO x was required, with ≥ 20wt% TaO x leading to reduced mechanical properties and increased nano-scale surface roughness of films. As polymers used for peripheral nerve injury devices, films facilitated nerve regeneration in an in vitro co-culture model of glia (Schwann cells) and dorsal root ganglion neurons (DRG), measured by expression markers for myelination. The ability of radiopaque films to support nerve regeneration was determined by the properties of the polymer matrix, with a range of 5-20wt% TaO x balancing both imaging functionality with biological response and proving that in situ monitoring of nerve repair devices is feasible.

2.
bioRxiv ; 2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36711467

RESUMO

Longitudinal radiological monitoring of biomedical devices is increasingly important, driven by risk of device failure following implantation. Polymeric devices are poorly visualized with clinical imaging, hampering efforts to use diagnostic imaging to predict failure and enable intervention. Introducing nanoparticle contrast agents into polymers is a potential method for creating radiopaque materials that can be monitored via computed tomography. However, properties of composites may be altered with nanoparticle addition, jeopardizing device functionality. This, we investigated material and biomechanical response of model nanoparticle-doped biomedical devices (phantoms), created from 0-40wt% TaO x nanoparticles in polycaprolactone, poly(lactide-co-glycolide) 85:15 and 50:50, representing non-, slow and fast degrading systems, respectively. Phantoms degraded over 20 weeks in vitro, in simulated physiological environments: healthy tissue (pH 7.4), inflammation (pH 6.5), and lysosomal conditions (pH 5.5), while radiopacity, structural stability, mechanical strength and mass loss were monitored. The polymer matrix determined overall degradation kinetics, which increased with lower pH and higher TaO x content. Importantly, all radiopaque phantoms could be monitored for a full 20-weeks. Phantoms implanted in vivo and serially imaged, demonstrated similar results. An optimal range of 5-20wt% TaO x nanoparticles balanced radiopacity requirements with implant properties, facilitating next-generation biomedical devices.

3.
Comp Med ; 69(1): 22-28, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717820

RESUMO

Canine histiocytic sarcoma is a highly aggressive and metastatic hematopoietic neoplasm that responds poorly to currently available treatment regimens. Our goal was to establish a clinically relevant xenograft mouse model to assess the preclinical efficacy of novel cancer treatment protocols for histiocytic sarcoma. We developed an intrasplenic xenograft mouse model characterized by consistent tumor growth and development of metastasis to the liver and other abdominal organs. This model represents the metastatic or disseminated form of canine histiocytic sarcoma, which is considered the most clinically challenging form of the disease. Transfection of tumor cells with a luciferase vector supported the use of in vivo bioluminescence imaging to track tumor progression over time and to assess the response of this murine model to novel chemotherapeutic agents. Dasatinib treatment of the mice with intrasplenic xenografts decreased tumor growth and increased survival times, compared with mice treated with vehicle only. Our findings indicate the potential of dasatinib for the treatment of histiocytic sarcoma in dogs and for similar diseases in humans. These results warrant additional studies to clinically test the efficacy of dasatinib in dogs with histiocytic sarcoma.


Assuntos
Dasatinibe/uso terapêutico , Modelos Animais de Doenças , Doenças do Cão/tratamento farmacológico , Sarcoma Histiocítico/veterinária , Animais , Antineoplásicos/uso terapêutico , Doenças do Cão/diagnóstico por imagem , Cães , Xenoenxertos , Sarcoma Histiocítico/diagnóstico por imagem , Sarcoma Histiocítico/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA