Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8778-8783, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976362

RESUMO

Coupling Weyl quasiparticles and charge density waves (CDWs) can lead to fascinating band renormalization and many-body effects beyond band folding and Peierls gaps. For the quasi-one-dimensional chiral compound (TaSe4)2I with an incommensurate CDW transition at TC = 263 K, photoemission mappings thus far are intriguing due to suppressed emission near the Fermi level. Models for this unconventional behavior include axion insulator phases, correlation pseudogaps, polaron subbands, bipolaron bound states, etc. Our photoemission measurements show sharp quasiparticle bands crossing the Fermi level at T > TC, but for T < TC, these bands retain their dispersions with no Peierls or axion gaps at the Weyl points. Instead, occupied band edges recede from the Fermi level, opening a spectral gap. Our results confirm localization of quasiparticles (holes created by photoemission) is the key physics, which suppresses spectral weights over an energy window governed by incommensurate modulation and inherent phase defects of CDW.

2.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382909

RESUMO

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

3.
Phys Rev Lett ; 118(14): 146402, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430465

RESUMO

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy, we have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.

4.
ACS Nano ; 16(9): 14918-14924, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36036754

RESUMO

Monolayer transition metal dichalcogenides offer an appropriate platform for developing advanced electronics beyond graphene. Similar to two-dimensional molecular frameworks, the electronic properties of such monolayers can be sensitive to perturbations from the surroundings; the implied tunability of electronic structure is of great interest. Using scanning tunneling microscopy/spectroscopy, we demonstrated a bandgap engineering technique in two monolayer materials, MoS2 and PtTe2, with the tunneling current as a control parameter. The bandgap of monolayer MoS2 decreases logarithmically by the increasing tunneling current, indicating an electric-field-induced gap renormalization effect. Monolayer PtTe2, by contrast, exhibits a much stronger gap reduction, and a reversible semiconductor-to-metal transition occurs at a moderate tunneling current. This unusual switching behavior of monolayer PtTe2, not seen in bulk semimetallic PtTe2, can be attributed to its surface electronic structure that can readily couple to the tunneling tip, as demonstrated by theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA