Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(17): 8934-8956, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607832

RESUMO

An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , DNA/metabolismo , Mutação Puntual , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
2.
Mol Biol Evol ; 38(7): 2854-2868, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33720298

RESUMO

Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.


Assuntos
Técnicas de Reprogramação Celular , Evolução Molecular Direcionada , Fatores do Domínio POU/genética , Animais , Fator 4 Semelhante a Kruppel , Camundongos , Engenharia de Proteínas
3.
Sci Adv ; 9(34): eadh2501, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611093

RESUMO

Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17FNV). eSox17FNV efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17FNV acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.


Assuntos
Células-Tronco Neurais , Humanos , Animais , Camundongos , Envelhecimento , Epigenômica , Perfilação da Expressão Gênica , Proteínas HMGB , Fatores de Transcrição SOXF/genética
4.
Blood Adv ; 2(14): 1664-1679, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30012585

RESUMO

Fumagillin is an antiangiogenic and antineoplastic fungal natural product, and TNP-470 is one of its most potent analogs. Decades of studies revealed that TNP-470 has potent anticancer activities via destruction of neovasculature. In stark contrast, TNP-470 has been reported to suppress lymphocyte proliferation, thereby limiting its clinical potentials. In an attempt to investigate whether the similar or opposite immunomodulatory effect of TNP-470 could act on myeloid cells, we found that TNP-470 potentiates the immunogenicity of dendritic cells (DCs) toward a phenotype with T helper cell type 1 (Th1)-stimulatory features. Using DC vaccine on a murine melanoma cancer model, the TNP-470-treated DC vaccine could significantly induce tumor-specific immunogenicity and substantially enhance tumor eradication when compared with vehicle-treated DC vaccine in a prophylactic setting. Enhanced tumor-specific immunogenicity and delayed tumor progression were observed in a therapeutic setting upon the TNP-470-treated DC vaccine. Our data showed that TNP-470 potentiates Toll-like receptor signaling, including NF-κB activation, in DCs to transcriptionally activate interleukin-12 production, thus inducing a Th1-immune response. Our current study uncovers a novel immune function of TNP-470 in DCs and redefines its role as a novel class of small molecule immune adjuvant in DC-based cancer vaccine given potentiation of DC immunogenicity is a major roadblock in DC vaccine development. Our study not only provides a novel adjuvant for ex vivo-cultured patient-specific DC vaccines for cancer treatment but also discovers the distinct immunostimulatory function of TNP-470 in DCs of myeloid lineage that differs from its immunosuppressive function in lymphoid cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Células Th1/imunologia , Animais , Diferenciação Celular/imunologia , Células Dendríticas/patologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Melanoma/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Células Th1/patologia
5.
Oncotarget ; 9(32): 22301-22315, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29854279

RESUMO

Triptolide (TL) is a potent anti-tumor, anti-inflammatory and immunosuppressive natural compound. Mechanistic studies revealed that TL inhibits tumor growth and triggers programmed cell death. Studies further suggested that TL inhibits heat shock response in cancer cells to induce apoptosis. HSP90ß is the major component of heat shock response and is overexpressed in different types of cancers. Given almost all identified HSP90ß inhibitors are either N or C-terminal inhibitors, small molecules attacking cysteine(s) in the middle domain might represent a new class of inhibitors. In the current study, we showed that TL inhibits HSP90ß in triple manner. Characterization suggests that TL inhibits ATPase activity by preventing ATP binding thus blunts the chaperone activity. TL disrupts HSP90ß-CDC37 (co-chaperone) complex through middle domain Cys366 of HSP90ß and causes kinase client protein degradation. At the cellular level, the TL-mediated decrease in CDK4 protein levels in HeLa cells causes reduced phosphorylation of Rb resulting in cell cycle arrest at the G1 phase. Furthermore, our results demonstrated that TL triggers programmed cell death in an HSP90ß-dependent manner as knockdown of HSP90ß further sensitized TL-mediated cell cycle arrest and apoptotic effect. Surprisingly, our data showed that TL is the first drug to be reported to induce site-specific phosphorylation of HSP90ß to drive apoptosome formation in the early phase of the treatment. In summary, our study established that TL is a novel middle domain HSP90ß inhibitor with bi-phasic multi-mechanistic inhibition. The unique regulatory mechanism of TL on HSP90ß makes it an effective inhibitor.

6.
Cancer Lett ; 331(2): 239-49, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318200

RESUMO

Inadequate immunity that occurs in a tumor environment is in part due to the presence of M2-type tumor-associated macrophages (TAMs). TGF-ß has a multi-functional role in tumor development including modulating the biological activity of both the tumor and TAMs. In this study, using an in vitro TAM/tumor cell co-culture system ligation of TLR7, which is expressed on TAMs but not the tumor cells, in the presence of TGF-ß receptor I inhibitor re-programmed the phenotype of the TAMs. In part they adopted the phenotype characteristic of M1-type macrophages, namely they had increased tumoricidal activity and elevated expression of iNOS, CD80 and MHC class II, while TGF-ß secretion was reduced. The reprogrammed phenotype was accompanied by enhanced NF-κB nuclear translocation. The pro-angiogenesis factor VEGF was down-regulated and in vivo the number of CD31-positive tumor capillaries was also reduced. Furthermore, in vivo we observed that TLR7 ligation/TGF-ß receptor I inhibition increased tumor apoptosis and elevated the number of CD4+, CD8+, and CD19+ cells as well as neutrophils infiltrating the tumor. Our data demonstrate that selective TLR stimulation with TGF-ß inhibition can reprogram TAMs towards an M1-like phenotype and thereby provides new perspectives in cancer therapy.


Assuntos
Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Neoplasias Experimentais/patologia , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/imunologia , Neovascularização Patológica , Reação em Cadeia da Polimerase , Fator de Crescimento Transformador beta/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA