Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 557: 42-45, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016625

RESUMO

Rolling-circle DNA amplification is a powerful tool employed in biotechnology to produce large from small amounts of DNA. This mode of DNA replication proceeds via a DNA topology that resembles a replication fork, thus also providing experimental access to the molecular mechanisms of DNA replication. However, conventional templates do not allow controlled access to multiple fork topologies, which is an important factor in mechanistic studies. Here we present the design and production of a rolling-circle substrate with a tunable length of both the gap and the overhang, and we show its application to the bacterial DNA-replication reaction.


Assuntos
Replicação do DNA/fisiologia , DNA Bacteriano/biossíntese , DNA Circular/biossíntese , Escherichia coli/química , Técnicas de Amplificação de Ácido Nucleico , DNA Bacteriano/química , DNA Circular/química , Escherichia coli/citologia , Conformação de Ácido Nucleico , Moldes Genéticos
2.
ACS Appl Mater Interfaces ; 8(10): 6743-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26910574

RESUMO

We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA