Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 16(48): 14520-33, 2010 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-20981666

RESUMO

A series of rhodium complexes, [Rh(cod)(NHC-F(x))(OH(2))] (cod = 1,5-cyclooctadiene; NHC = N-heterocyclic carbene), incorporating anionic N-heterocyclic carbenes with 2-tert-butylmalonyl backbones and 2,6-dimethylphenyl (x = 0), 2,6-difluorophenyl (x = 4), 2,4,6-trifluorophenyl (x = 6), and pentafluorophenyl (x = 10) N,N'-substituents, respectively, has been prepared by deprotonation of the corresponding zwitterionic precursors with potassium hexamethyldisilazide, followed by immediate reaction of the resulting potassium salts with [{RhCl(cod)}(2)]. These complexes could be converted to the related carbonyl derivatives [Rh(CO)(2)(NHC-F(x))(OH(2))] by displacement of the COD ligand with CO. IR and NMR spectroscopy demonstrated that the degree of fluorination of the N-aryl substituents has a considerable influence on the σ-donating and π-accepting properties of the carbene ligands and could be effectively used to tune the electronic properties of the metal center. The carbonyl groups on the carbene ligand backbone provided a particularly sensitive probe for the assessment of the metal-to-ligand π donation. The ortho-fluorine substituents on the N-aryl groups in the carbene ligands interacted with the other ligands on rhodium, determining the conformation of the complexes and creating a pocket suitable for the coordination of water to the metal center. Computational studies were used to explain the influence of the fluorinated N-substituents on the electronic properties of the ligand and evaluate the relative contribution of the σ- and π-interactions to the ligand-metal interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA