Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 548(7666): 187-191, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28796201

RESUMO

Non-Hermitian degeneracies, also known as exceptional points, have recently emerged as a new way to engineer the response of open physical systems, that is, those that interact with the environment. They correspond to points in parameter space at which the eigenvalues of the underlying system and the corresponding eigenvectors simultaneously coalesce. In optics, the abrupt nature of the phase transitions that are encountered around exceptional points has been shown to lead to many intriguing phenomena, such as loss-induced transparency, unidirectional invisibility, band merging, topological chirality and laser mode selectivity. Recently, it has been shown that the bifurcation properties of second-order non-Hermitian degeneracies can provide a means of enhancing the sensitivity (frequency shifts) of resonant optical structures to external perturbations. Of particular interest is the use of even higher-order exceptional points (greater than second order), which in principle could further amplify the effect of perturbations, leading to even greater sensitivity. Although a growing number of theoretical studies have been devoted to such higher-order degeneracies, their experimental demonstration in the optical domain has so far remained elusive. Here we report the observation of higher-order exceptional points in a coupled cavity arrangement-specifically, a ternary, parity-time-symmetric photonic laser molecule-with a carefully tailored gain-loss distribution. We study the system in the spectral domain and find that the frequency response associated with this system follows a cube-root dependence on induced perturbations in the refractive index. Our work paves the way for utilizing non-Hermitian degeneracies in fields including photonics, optomechanics, microwaves and atomic physics.

2.
Nature ; 551(7682): 658, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29189779

RESUMO

This corrects the article DOI: 10.1038/nature23280.

3.
Opt Express ; 28(13): 19608-19616, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672234

RESUMO

The dynamical behavior of broken symmetric coupled cavity lasers is theoretically investigated. The frequency response of this class of lasers is obtained using small signal analysis under direct modulation. Our model predicts a modulation bandwidth enhancement as a broken symmetric laser, operating in the parity-time (PT) symmetry and non-PT symmetry domains. This theoretical prediction is numerically examined in a laser system based on an InGaAs quantum dot platform. Our results clearly show that in these structures, in addition to the injection current, the gain-loss contrast can be used as a new degree of freedom in order to control the characteristic poles of the frequency response function.

4.
Phys Rev Lett ; 120(11): 113901, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601765

RESUMO

We report the first observation of lasing topological edge states in a 1D Su-Schrieffer-Heeger active array of microring resonators. We show that the judicious use of non-Hermiticity can promote single edge-mode lasing in such arrays. Our experimental and theoretical results demonstrate that, in the presence of chiral-time symmetry, this non-Hermitian topological structure can experience phase transitions that are dictated by a complex geometric phase. Our work may pave the way towards understanding the fundamental aspects associated with the interplay among non-Hermiticity, nonlinearity, and topology in active systems.

5.
Opt Express ; 24(13): 13999-4009, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410563

RESUMO

Upconversion of near infrared (NIR) into ultraviolet (UV) radiation could lead to a number of applications in bio-imaging, diagnostics and drug delivery. However, for bare nanoparticles, the conversion efficiency is extremely low. In this work, we experimentally demonstrate strongly enhanced upconversion emission from an ensemble of ß-NaYF4:Gd3+/Yb3+/Tm3+ @NaLuF4 core-shell nanoparticles trapped in judiciously designed plasmonic nanocavities. In doing so, different metal platforms and nanostructures are systematically investigated. Our results indicate that using a cross-shape silver nanocavity, a record high enhancement of 170-fold can be obtained in the UV band centered at a wavelength of 345 nm. The observed upconversion efficiency improvement may be attributed to the increased absorption at NIR, the tailored photonic local density of states, and the light out-coupling characteristics of the cavity.

6.
Phys Rev E ; 93: 042219, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176305

RESUMO

The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.

7.
Science ; 346(6212): 975-8, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25414308

RESUMO

The ability to control the modes oscillating within a laser resonator is of fundamental importance. In general, the presence of competing modes can be detrimental to beam quality and spectral purity, thus leading to spatial as well as temporal fluctuations in the emitted radiation. We show that by harnessing notions from parity-time (PT) symmetry, stable single-longitudinal mode operation can be readily achieved in a system of coupled microring lasers. The selective breaking of PT symmetry can be used to systematically enhance the maximum attainable output power in the desired mode. This versatile concept is inherently self-adapting and facilitates mode selectivity over a broad bandwidth without the need for other additional intricate components. Our experimental findings provide the possibility to develop synthetic optical devices and structures with enhanced functionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA