Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant J ; 114(1): 159-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710658

RESUMO

The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Humanos , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Transdução de Sinal Luminoso/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 75(11): 3624-3642, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38520340

RESUMO

The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.


Assuntos
Transcriptoma , Raios Ultravioleta , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol ; 187(1): 276-288, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822236

RESUMO

Arabidopsis (Arabidopsis thaliana) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and members of the SUPPRESSOR OF PHYTOCHROMEA-105 (SPA) protein family form an E3 ubiquitin ligase that suppresses light signaling in darkness by polyubiquitinating positive regulators of the light response. COP1/SPA is inactivated by light to allow photomorphogenesis to proceed. Mechanisms of inactivation include light-induced degradation of SPA1 and, in particular, SPA2, corresponding to a particularly efficient inactivation of COP1/SPA2 by light. Here, we show that SPA3 and SPA4 proteins are stable in the light, indicating that light-induced destabilization is specific to SPA1 and SPA2, possibly related to the predominant function of SPA1 and SPA2 in dark-grown etiolating seedlings. SPA2 degradation involves cullin and the COP10-DEETIOLATED-DAMAGED-DNA BINDING PROTEIN (DDB1) CDD complex, besides COP1. Consistent with this finding, light-induced SPA2 degradation required the DDB1-interacting Trp-Asp (WD)-repeat domain of SPA2. Deletion of the N-terminus of SPA2 containing the kinase domain led to strong stabilization of SPA2 in darkness and fully abolished light-induced degradation of SPA2. This prevented seedling de-etiolation even in very strong far-red and blue light and reduced de-etiolation in red light, indicating destabilization of SPA2 through its N-terminal domain is essential for light response. SPA2 is exclusively destabilized by phytochrome A in far-red and blue light. However, deletion of the N-terminal domain of SPA2 did not abolish SPA2-phytochrome A interaction in yeast nor in vivo. Our domain mapping suggests there are two SPA2-phytochrome A interacting domains, the N-terminal domain and the WD-repeat domain. Conferring a light-induced SPA2-phyA interaction only via the WD-repeat domain may thus not lead to COP1/SPA2 inactivation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Vegetal/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(52): 27133-27141, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822614

RESUMO

In plants, the cryptochrome photoreceptors suppress the activity of the COP1/SPA ubiquitin ligase to initiate photomorphogenesis in blue light. Both CRY1 and CRY2 interact with the COP1/SPA complex in a blue light-dependent manner. The mechanisms underlying the inhibition of COP1 activity through direct interactions with photoactivated CRYs are not fully understood. Here we tested the hypothesis that CRY2 inhibits COP1 by displacing the degradation substrates from COP1. To this end, we analyzed the role of a conserved valine-proline (VP) motif in the C-terminal domain of CRY2 (CCT2), which resembles the core COP1-WD40-binding sequences present in the substrates of COP1. We show that the VP motif in CRY2 is essential for the interaction of CRY2 with COP1 in yeast two-hybrid assays and in planta. Mutations in the VP motif of CRY2 abolished the CRY2 activity in photomorphogenesis, indicating the importance of VP. The interaction between COP1 and its VP-containing substrate PAP2 was prevented in the presence of coexpressed CRY2, but not in the presence of CRY2 carrying a VP mutation. Thus, since both PAP2 and CRY2 engage VP motifs to bind to COP1, these results demonstrate that CRY2 outcompetes PAP2 for binding to COP1. We further found that the previously unknown interaction between SPA1-WD and CCT2 occurs via the VP motif in CRY2, suggesting structural similarities in the VP-binding pockets of COP1-WD40 and SPA1-WD40 domains. A VP motif present in CRY1 is also essential for binding to COP1. Thus, CRY1 and CRY2 might share this mechanism of COP1 inactivation.

5.
Plant J ; 104(4): 1038-1053, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890447

RESUMO

Phytochromes are red/far-red light receptors in plants involved in the regulation of growth and development. Phytochromes can sense the light environment and contribute to measuring day length; thereby, they allow plants to respond and adapt to changes in the ambient environment. Two well-characterized signalling pathways act downstream of phytochromes and link light perception to the regulation of gene expression. The CONSTITUTIVELY PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA-105 (COP1/SPA) E3 ubiquitin ligase complex and the PHYTOCHROME INTERACTING FACTORs (PIFs) are key components of these pathways and repress light responses in the dark. In light-grown seedlings, phytochromes inhibit COP1/SPA and PIF activity and thereby promote light signalling. In a yeast-two-hybrid screen for proteins binding to light-activated phytochromes, we identified COLD-REGULATED GENE 27 (COR27). COR27 and its homologue COR28 bind to phyA and phyB, the two primary phytochromes in seed plants. COR27 and COR28 have been described previously with regard to a function in the regulation of freezing tolerance, flowering and the circadian clock. Here, we show that COR27 and COR28 repress early seedling development in blue, far-red and in particular red light. COR27 and COR28 contain a conserved Val-Pro (VP)-peptide motif, which mediates binding to the COP1/SPA complex. COR27 and COR28 are targeted for degradation by COP1/SPA and mutant versions with a VP to AA amino acid substitution in the VP-peptide motif are stabilized. Overall, our data suggest that COR27 and COR28 accumulate in light but act as negative regulators of light signalling during early seedling development, thereby preventing an exaggerated response to light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transdução de Sinal Luminoso , Fitocromo B/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Relógios Circadianos , Mutação , Complexo de Endopeptidases do Proteassoma , Proteólise , Proteínas Repressoras/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Ubiquitina-Proteína Ligases/genética
6.
Plant Cell Environ ; 44(10): 3273-3282, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251043

RESUMO

The Arabidopsis COP1/SPA complex acts as a cullin4-based E3 ubiquitin ligase to suppress photomorphogenesis in darkness. It is a tetrameric complex of two COP1 and two SPA proteins. Both COP1 and SPA are essential for the activity of this complex, and they both contain a C-terminal WD-repeat domain responsible for substrate recruitment and binding of DDB1. Here, we used a WD domain swap-approach to address the cooperativity of COP1 and SPA proteins. We found that expression of a chimeric COP1 carrying the WD-repeat domain of SPA1 mostly complemented the cop1-4-mutant phenotype in darkness, indicating that the WD repeat of SPA1 can replace the WD repeat of COP1. In the light, SPA1-WD partially substituted for COP1-WD. In contrast, expression of a chimeric SPA1 protein carrying the WD repeat of COP1 did not rescue the spa-mutant phenotype. Together, our findings demonstrate that a SPA1-type WD repeat is essential for COP1/SPA activity, while a COP1-type WD is in part dispensible. Moreover, a complex with four SPA1-WDs is more active than a complex with only two SPA1-WDs. A homology model of SPA1-WD based on the crystal structure of COP1-WD uncovered two insertions and several amino acid substitutions at the predicted substrate-binding pocket of SPA1-WD.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Complexo I de Proteína do Envoltório/genética , Repetições WD40/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Desenvolvimento Vegetal/efeitos da radiação
7.
Physiol Plant ; 169(3): 380-396, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32187694

RESUMO

Photomorphogenesis is repressed in the dark mainly by an E3 ubiquitin ligase complex comprising CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and four homologous proteins called SUPPRESSOR OF PHYA-105 (SPA1-SPA4) in Arabidopsis. This complex induces the ubiquitination and subsequent degradation of positively acting transcription factors (TFs; e.g. ELONGATED HYPOCOTYL (HY5), LONG HYPOCOTYL IN FAR-RED 1 (HFR1), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and others] in the dark to repress photomorphogenesis. Genomic evidence showed a large number of genes regulated by COP1 in the dark, of which many are direct targets of HY5. However, the genomic basis for the constitute photomorphogenic phenotype of spaQ remains unknown. Here, we show that >7200 genes are differentially expressed in the spaQ background compared to wild-type in the dark. Comparison of the RNA sequencing (RNA-Seq) data between cop1 and spaQ revealed a large overlapping set of genes regulated by the COP1-SPA complex. In addition, many of the genes coordinately regulated by the COP1-SPA complex are also regulated by HY5 directly and indirectly. Taken together, our data reveal that SPA proteins repress photomorphogenesis by controlling gene expression in concert with COP1, likely through regulating the abundance of downstream TFs in light signaling pathways. Moreover, SPA proteins may function both in a COP1-dependent and -independent manner in regulating many biological processes and developmental pathways in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genômica , Luz , Redes e Vias Metabólicas , Plântula/genética , Ubiquitina-Proteína Ligases
8.
PLoS Genet ; 13(10): e1007044, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991901

RESUMO

Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Transdução de Sinal Luminoso/genética , Luz , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Imunoprecipitação , Plântula/genética , Plântula/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/genética
9.
New Phytol ; 224(4): 1613-1626, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222750

RESUMO

The Arabidopsis COP1/SPA complex is a key repressor of photomorphogenesis that suppresses light signaling in the dark. Both COP1 and SPA proteins are essential components of this complex. Although COP1 also exists in humans, SPA genes are specific to the green lineage. To elucidate the evolution of SPA genes we analyzed SPA functions in the moss Physcomitrella patens by characterizing knockout mutants in the two Physcomitrella SPA genes PpSPAa and PpSPAb. Light-grown PpspaAB double mutants exhibit smaller gametophores than the wild-type. In the dark, PpspaAB mutant gametophores show enhanced continuation of growth but etiolate normally. Gravitropism in the dark is reduced in PpspaAB mutant protonemata. The expression of light-regulated genes is mostly not constitutive in PpspaAB mutants. PpSPA and PpCOP1 interact; PpCOP1 also interacts with the transcription factor PpHY5 and, indeed, PpHY5 is destabilized in dark-grown Physcomitrella. Degradation of PpHY5 in darkness, however, does not require PpSPAa and PpSPAb. The data suggest that COP1/SPA-mediated light signaling is only partially conserved between Arabidopsis and Physcomitrella. Whereas COP1/SPA interaction and HY5 degradation in darkness is conserved, the role of SPA proteins appears to have diverged. PpSPA genes, unlike their Arabidopsis counterparts, are only required to suppress a subset of light responses in darkness.


Assuntos
Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Evolução Biológica , Bryopsida/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Gravitropismo/genética , Luz , Mutação , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/genética
10.
Plant Physiol ; 176(2): 1327-1340, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187570

RESUMO

The ambient light environment controls many aspects of plant development throughout a plant's life cycle. Such complex control is achieved because a key repressor of light signaling, the Arabidopsis (Arabidopsis thaliana) COP1/SPA E3 ubiquitin ligase causes the degradation of multiple regulators of endogenous developmental pathways. This includes the CONSTANS (CO) transcription factor that is responsible for photoperiodic control of flowering time. There are 16 CO-like proteins whose functions are only partly understood. Here, we show that 14 CO-like (COL) proteins bind CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF PHYTOCHROME A-105 (SPA)1 in vitro. We subsequently focused on COL12 and show that COL12 binds COP1 and SPA proteins in vivo. The COL12 protein is degraded in darkness in a COP1-dependent fashion, indicating that COL12 is a substrate of the COP1/SPA ubiquitin ligase. Overexpression of COL12 causes late flowering specifically in long day conditions by decreasing the expression of FLOWERING LOCUS T This phenotype is genetically dependent on CO. Consistent with this finding, COL12 physically interacts with CO in vivo, suggesting that COL12 represses flowering by inhibiting CO protein function. We show that COL12 overexpression did not alter CO protein stability. It is therefore likely that COL12 represses the activity of CO rather than CO levels. Overexpression of COL12 also affects plant architecture by increasing the number of rosette branches and reducing inflorescence height. These phenotypes are CO independent. Hence, we suggest that COL12 affects plant development through CO-dependent and CO-independent mechanisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Flores/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Flores/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Plant Cell Physiol ; 59(10): 2099-2112, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010959

RESUMO

Plants are continuously exposed to a myriad of stresses, which lead to the formation of secondary metabolites including flavonoids. Studies suggest that low temperature exposure leads to enhanced flavonoid accumulation in Arabidopsis thaliana. In addition, flavonoid biosynthesis is regulated by light through various regulatory factors. Therefore, plants may possess the capability to integrate light and low temperature signals for survival under freezing conditions. However, the detailed molecular mechanism and the regulatory factors associated with light- and low temperature- responsive flavonoid biosynthesis remain largely unknown. Here, we report a strict requirement for light for the low temperature-enhanced flavonol biosynthesis. Low temperature-induced expression of biosynthetic genes as well as flavonol accumulation was hampered in ELONGATED HYPOCOTYL (hy5) and myb11myb111myb12 triple mutants as compared with the wild type in Arabidopsis. Overexpression of AtHY5 in the hy5 mutant restored induction of gene expression and flavonol accumulation in response to low temperature in light. Metabolite and gene expression analysis also suggests a negative role for CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in accumulation of flavonols in response to low temperature. Overexpression of AtMYB12 enhanced accumulation of flavonols under low temperature in a light-dependent manner. Together, our analysis suggests the requirement for HY5 and flavonol-specific MYB regulatory factors for low temperature-induced flavonol synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonóis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/metabolismo , Hipocótilo/fisiologia , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Physiol ; 174(3): 1314-1321, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28536102

RESUMO

The Arabidopsis (Arabidopsis thaliana) COP1/SPA ubiquitin ligase is a central repressor that suppresses light signaling in darkness by targeting positive regulators of the light response, mainly transcription factors, for degradation. Light inactivates COP1/SPA, in part by excluding COP1 from the nucleus. SPA proteins are essential cofactors of COP1, but their exact role in the COP1/SPA complex is thus far unknown. To unravel a potential role of SPA proteins in COP1 nucleocytoplasmic partitioning, we monitored the subcellular localization of COP1 in a spa1234 quadruple mutant (spaQn). We analyzed a YFP-COP1-expressing transgenic line and endogenous COP1 after subcellular fractionation. In dark-grown seedlings, both YFP-COP1 and endogenous COP1 accumulated in the nucleus in the absence and presence of SPA proteins, indicating that SPA proteins are not required for nuclear localization of COP1 in darkness. In contrast, in white light-grown seedlings, spaQn mutants failed to relocalize COP1 from the nucleus to the cytoplasm. Hence, SPA proteins are necessary for the light-controlled change in COP1 subcellular localization. We conclude that SPA proteins have a dual role: (1) they are required for light-responsiveness of COP1 subcellular localization, and (2) they promote COP1 activity in darkness in a fashion that is independent of the nuclear import/nuclear retention of COP1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Morfogênese/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Núcleo Celular/metabolismo , Escuridão , Mutação/genética , Transporte Proteico/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Frações Subcelulares/metabolismo
13.
PLoS Genet ; 11(9): e1005516, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26368289

RESUMO

The Arabidopsis COP1/SPA E3 ubiquitin ligase is a key negative regulator that represses light signaling in darkness by targeting transcription factors involved in the light response for degradation. The COP1/SPA complex consists of COP1 and members of the four-member SPA protein family (SPA1-SPA4). Genetic analysis indicated that COP1/SPA2 function is particularly strongly repressed by light when compared to complexes carrying the other three SPAs, thereby promoting a light response after exposure of plants to extremely low light. Here, we show that the SPA2 protein is degraded within 5-15 min after exposure of dark-grown seedlings to a pulse of light. Phytochrome photoreceptors are required for the rapid degradation of SPA2 in red, far-red and also in blue light, whereas cryptochromes are not involved in the rapid, blue light-induced reduction in SPA2 protein levels. These results uncover a photoreceptor-specific mechanism of light-induced inhibition of COP1/SPA2 function. Phytochrome A (phyA) is required for the severe blue light responsiveness of spa triple mutants expressing only SPA2, thus confirming the important role of phyA in downregulating SPA2 function in blue light. In blue light, SPA2 forms a complex with cryptochrome 1 (cry1), but not with cryptochrome 2 (cry2) in vivo, indicating that the lack of a rapid blue light response of the SPA2 protein is only in part caused by a failure to interact with cryptochromes. Since SPA1 interacts with both cry1 and cry2, these results provide first molecular evidence that the light-regulation of different SPA proteins diverged during evolution. SPA2 degradation in the light requires COP1 and the COP1-interacting coiled-coil domain of SPA2, supporting that SPA2 is ubiquitinated by COP1. We propose that light perceived by phytochromes causes a switch in the ubiquitination activity of COP1/SPA2 from ubiquitinating downstream substrates to ubiquitinating SPA2, which subsequently causes a repression of COP1/SPA2 function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Fotorreceptores de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogênese , Mutação , Fitocromo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise , Ubiquitina-Proteína Ligases
14.
Plant J ; 88(2): 205-218, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27310313

RESUMO

The COP1/SPA complex is an E3 ubiquitin ligase that acts as a key repressor of photomorphogenesis in dark-grown plants. While both COP1 and the four SPA proteins contain coiled-coil and WD-repeat domains, SPA proteins differ from COP1 in carrying an N-terminal kinase-like domain that is not present in COP1. Here, we have analyzed the effects of deletions and missense mutations in the N-terminus of SPA1 when expressed in a spa quadruple mutant background devoid of any other SPA proteins. Deletion of the large N-terminus of SPA1 severely impaired SPA1 activity in transgenic plants with respect to seedling etiolation, leaf expansion and flowering time. This ΔN SPA1 protein showed a strongly reduced affinity for COP1 in vitro and in vivo, indicating that the N-terminus contributes to COP1/SPA complex formation. Deletion of only the highly conserved 95 amino acids of the kinase-like domain did not severely affect SPA1 function nor interactions with COP1 or cryptochromes. In contrast, missense mutations in this part of the kinase-like domain severely abrogated SPA1 function, suggesting an overriding negative effect of these mutations on SPA1 activity. We therefore hypothesize that the sequence of the kinase-like domain has been conserved during evolution because it carries structural information important for the activity of SPA1 in darkness. The N-terminus of SPA1 was not essential for light responsiveness of seedlings, suggesting that photoreceptors can inhibit the COP1/SPA complex in the absence of the SPA1 N-terminal domain. Together, these results uncover an important, but complex role of the SPA1 N-terminus in the suppression of photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Flores/genética , Flores/metabolismo , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Mutação/genética , Ubiquitina-Proteína Ligases
15.
Development ; 141(16): 3165-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063454

RESUMO

Stomatal development is tightly regulated through internal and external factors that are integrated by a complex signalling network. Light represents an external factor that strongly promotes stomata formation. Here, we show that auxin-resistant aux/iaa mutants, e.g. axr3-1, exhibit a de-repression of stomata differentiation in dark-grown seedlings. The higher stomatal index in dark-grown axr3-1 mutants when compared with the wild type is due to increased cell division in the stomatal lineage. Excessive stomata in dark-grown seedlings were also observed in mutants defective in auxin biosynthesis or auxin perception and in seedlings treated with the polar auxin transport inhibitor NPA. Consistent with these findings, exogenous auxin repressed stomata formation in light-grown seedlings. Taken together, these results indicate that auxin is a negative regulator of stomatal development in dark-grown seedlings. Epistasis analysis revealed that axr3-1 acts genetically upstream of the bHLH transcription factors SPCH, MUTE and FAMA, as well as the YDA MAP kinase cascade, but in parallel with the repressor of photomorphogenesis COP1 and the receptor-like protein TMM. The effect of exogenous auxin required the ER family of leucine-rich repeat receptor-like kinases, suggesting that auxin acts at least in part through the ER family. Expression of axr3-1 in the stomatal lineage was insufficient to alter the stomatal index, implying that cell-cell communication is necessary to mediate the effect of auxin. In summary, our results show that auxin signalling contributes to the suppression of stomatal differentiation observed in dark-grown seedlings.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/fisiologia , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comunicação Celular , Diferenciação Celular , Epistasia Genética , Luz , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição
16.
BMC Plant Biol ; 16(1): 165, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444995

RESUMO

BACKGROUND: Plants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. In the light, COP1/SPA activity is inhibited by photoreceptors, thereby allowing accumulation of these transcription factors and a subsequent light response. Previous results have shown that the four members of the SPA family exhibit partially divergent functions. In particular, SPA1 and SPA2 strongly differ in their responsiveness to light, while they have indistinguishable activities in darkness. The much higher light-responsiveness of SPA2 is partially explained by the much stronger light-induced degradation of SPA2 when compared to SPA1. Here, we have conducted SPA1/SPA2 domain swap experiments to identify the protein domain(s) responsible for the functional divergence between SPA1 and SPA2. RESULTS: We have individually swapped the three domains between SPA1 and SPA2 - the N-terminal kinase-like domain, the coiled-coil domain and the WD-repeat domain - and expressed them in spa mutant Arabidopsis plants. The phenotypes of transgenic seedlings show that the respective N-terminal kinase-like domain is primarily responsible for the respective light-responsiveness of SPA1 and SPA2. Furthermore, the most divergent part of the N-terminal domain was sufficient to confer a SPA1- or SPA2-like activity to the respective SPA protein. The stronger light-induced degradation of SPA2 when compared to SPA1 was also primarily conferred by the SPA2 N-terminal domain. At last, the different affinities of SPA1 and SPA2 for cryptochrome 2 are defined by the N-terminal domain of the respective SPA protein. In contrast, both SPA1 and SPA2 similarly interacted with COP1 in light-grown seedlings. CONCLUSIONS: Our results show that the distinct activities and protein stabilities of SPA1 and SPA2 in light-grown seedlings are primarily encoded by their N-terminal kinase-like domains. Similarly, the different affinities of SPA1 and SPA2 for cry2 are explained by their respective N-terminal domain. Hence, after a duplication event during evolution, the N-terminal domains of SPA1 and SPA2 underwent subfunctionalization, possibly to allow optimal adaptation of growth and development to a changing light environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Evolução Biológica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
17.
BMC Plant Biol ; 16(1): 190, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586417

RESUMO

BACKGROUND: (Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis. RESULTS: In this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds. CONCLUSIONS: When sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.


Assuntos
Cromatografia Líquida/métodos , Flavonoides/biossíntese , Espectrometria de Massas/métodos , Plântula/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plântula/genética
18.
Mol Cell ; 31(4): 607-613, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18722184

RESUMO

Fine tuning of light signaling is crucial to plant development. Following light-triggered nuclear translocation, the photoreceptor phytochrome A (phyA) regulates gene expression under continuous far-red light and is rapidly destabilized upon red light irradiation by E3 ubiquitin ligases, including COP1. Here we provide evidence that the light signaling repressors SPA proteins contribute to COP1-mediated phyA degradation and that a COP1/SPA1 protein complex is tightly associated with phyA ubiquitination activity. Furthermore, a phosphorylated phyA form accumulates in the nucleus and preferentially associates with the COP1/SPA1 complex. In contrast, underphosphorylated phyA predominantly associates with the phyA-signaling intermediates FHY3 and FHY1. However, COP1 associates with underphosphorylated phyA in the absence of FHY3 or FHY1, suggesting that phyA associations with FHY3 and FHY1 protect underphosphorylated phyA from being recognized by the COP1/SPA complex. We propose that light-induced phyA phosphorylation acts as a switch controlling differential interactions of the photoreceptor with signal propagation or attenuation machineries.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Luz , Fitocromo A/metabolismo , Fitocromo/metabolismo , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos da radiação
19.
Plant Cell ; 24(6): 2610-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22739826

RESUMO

The UV-A/blue light photoreceptor crytochrome2 (cry2) plays a fundamental role in the transition from the vegetative to the reproductive phase in the facultative long-day plant Arabidopsis thaliana. The cry2 protein level strongly decreases when etiolated seedlings are exposed to blue light; cry2 is first phosphorylated, polyubiquitinated, and then degraded by the 26S proteasome. COP1 is involved in cry2 degradation, but several cop1 mutants show only reduced but not abolished cry2 degradation. SUPPRESSOR OF PHYA-105 (SPA) proteins are known to work in concert with COP1, and recently direct physical interaction between cry2 and SPA1 was demonstrated. Thus, we hypothesized that SPA proteins could also play a role in cry2 degradation. To this end, we analyzed cry2 protein levels in spa mutants. In all spa mutants analyzed, cry2 degradation under continuous blue light was alleviated in a fluence rate-dependent manner. Consistent with a role of SPA proteins in phytochrome A (phyA) signaling, a phyA mutant had enhanced cry2 levels, particularly under low fluence rate blue light. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy studies showed a robust physical interaction of cry2 with SPA1 in nuclei of living cells. Our results suggest that cry2 stability is controlled by SPA and phyA, thus providing more information on the molecular mechanisms of interaction between cryptochrome and phytochrome photoreceptors.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Criptocromos/metabolismo , Fitocromo A/metabolismo , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência/métodos , Mutação , Fitocromo A/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Plant J ; 75(1): 67-79, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23573936

RESUMO

In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post-germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub-nuclear accumulation of COP1. The MID protein is not degraded in a COP1-dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1-dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1-dependent development with the regulation of endoreduplication.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Topoisomerase IV/genética , Endorreduplicação/genética , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Antocianinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , DNA Topoisomerase IV/metabolismo , Escuridão , Germinação , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/ultraestrutura , Complexos Multienzimáticos , Mutação , Cebolas/genética , Cebolas/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Ploidias , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/ultraestrutura , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA