Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361045

RESUMO

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Prognóstico , Neoplasias Ovarianas/patologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Cistadenocarcinoma Seroso/patologia , Proteínas de Membrana/genética , Proteínas Repressoras/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
2.
J Pathol ; 256(1): 61-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564861

RESUMO

Cutaneous, ocular, and mucosal melanomas are histologically indistinguishable tumors that are driven by a different spectrum of genetic alterations. With current methods, identification of the site of origin of a melanoma metastasis is challenging. DNA methylation profiling has shown promise for the identification of the site of tumor origin in various settings. Here we explore the DNA methylation landscape of melanomas from different sites and analyze if different melanoma origins can be distinguished by their epigenetic profile. We performed DNA methylation analysis, next generation DNA panel sequencing, and copy number analysis of 82 non-cutaneous and 25 cutaneous melanoma samples. We further analyzed eight normal melanocyte cell culture preparations. DNA methylation analysis separated uveal melanomas from melanomas of other primary sites. Mucosal, conjunctival, and cutaneous melanomas shared a common global DNA methylation profile. Still, we observed location-dependent DNA methylation differences in cancer-related genes, such as low frequencies of RARB (7/63) and CDKN2A promoter methylation (6/63) in mucosal melanomas, or a high frequency of APC promoter methylation in conjunctival melanomas (6/9). Furthermore, all investigated melanomas of the paranasal sinus showed loss of PTEN expression (9/9), mainly caused by promoter methylation. This was less frequently seen in melanomas of other sites (24/98). Copy number analysis revealed recurrent amplifications in mucosal melanomas, including chromosomes 4q, 5p, 11q and 12q. Most melanomas of the oral cavity showed gains of chromosome 5p with TERT amplification (8/10), while 11q amplifications were enriched in melanomas of the nasal cavity (7/16). In summary, mucosal, conjunctival, and cutaneous melanomas show a surprisingly similar global DNA methylation profile and identification of the site of origin by DNA methylation testing is likely not feasible. Still, our study demonstrates tumor location-dependent differences of promoter methylation frequencies in specific cancer-related genes together with tumor site-specific enrichment for specific chromosomal changes and genetic mutations. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Metilação de DNA/genética , Genes Neoplásicos/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Neoplasias da Túnica Conjuntiva/genética , Epigênese Genética/genética , Humanos , Melanoma/patologia , Mutação/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
3.
Biochim Biophys Acta ; 1861(2): 108-118, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603902

RESUMO

The genome of Aspergillus niger codes for a fusion protein (EHA25900), which can be aligned with ~50% sequence identity to 9S-dioxygenase (DOX)-allene oxide synthase (AOS) of Fusarium oxysporum, homologues of the Fusarium and Colletotrichum complexes and with over 62% sequence identity to homologues of Aspergilli, including (DOX)-9R-AOS of Aspergillus terreus. The aims were to characterize the enzymatic activities of EHA25900 and to identify crucial amino acids for the stereospecificity. Recombinant EHA25900 oxidized 18:2n-6 sequentially to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE) and to a 9R(10)-allene oxide. 9S- and 9R-DOX-AOS catalyze abstraction of the pro-R hydrogen at C-11, but the direction of oxygen insertion differs. A comparison between twelve 9-DOX domains of 9S- and 9R-DOX-AOS revealed conserved amino acid differences, which could contribute to the chirality of products. The Gly616Ile replacement of 9R-DOX-AOS (A. niger) increased the biosynthesis of 9S-HPODE and the 9S(10)-allene oxide, whereas the Phe627Leu replacement led to biosynthesis of 9S-HPODE and the 9S(10)-allene oxide as main products. The double mutant (Gly616Ile, Phe627Leu) formed over 90% of the 9S stereoisomer of HPODE. 9S-HPODE was formed by antarafacial hydrogen abstraction and oxygen insertion, i.e., the original H-abstraction was retained but the product chirality was altered. We conclude that 9R-DOX-AOS can be altered to 9S-DOX-AOS by replacement of two amino acids (Gly616Ile, Phe627Leu) in the DOX domain.


Assuntos
Substituição de Aminoácidos , Aspergillus niger/metabolismo , Proteínas Fúngicas/química , Oxirredutases Intramoleculares/química , Ácidos Linoleicos/metabolismo , Sequência de Aminoácidos , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus niger/genética , Biocatálise , Sequência Conservada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Expressão Gênica , Peróxido de Hidrogênio , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo
4.
J Lipid Res ; 55(10): 2113-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25121983

RESUMO

The genome of the rice blast fungus Magnaporthe oryzae codes for two proteins with N-terminal dioxygenase (DOX) and C-terminal cytochrome P450 (CYP) domains, respectively. One of them, MGG_13239, was confirmed as 7,8-linoleate diol synthase by prokaryotic expression. The other recombinant protein (MGG_10859) possessed prominent 10R-DOX and epoxy alcohol synthase (EAS) activities. This enzyme, 10R-DOX-EAS, transformed 18:2n-6 sequentially to 10(R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE) and to 12S(13R)-epoxy-10(R)-hydroxy-8(E)-octadecenoic acid as the end product. Oxygenation at C-10 occurred by retention of the pro-R hydrogen of C-8 of 18:2n-6, suggesting antarafacial hydrogen abstraction and oxygenation. Experiments with (18)O2 and (16)O2 gas confirmed that the epoxy alcohol was formed from 10R-HPODE, likely by heterolytic cleavage of the dioxygen bond with formation of P450 compound I, and subsequent intramolecular epoxidation of the 12(Z) double bond. Site-directed mutagenesis demonstrated that the cysteinyl heme ligand of the P450 domain was required for the EAS activity. Replacement of Asn(965) with Val in the conserved AsnGlnXaaGln sequence revealed that Asn(965) supported formation of the epoxy alcohol. 10R-DOX-EAS is the first member of a novel subfamily of DOX-CYP fusion proteins of devastating plant pathogens.


Assuntos
Sistema Enzimático do Citocromo P-450 , Dioxigenases , Proteínas Fúngicas , Genoma Fúngico , Magnaporthe , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/enzimologia , Magnaporthe/genética
5.
J Biol Chem ; 288(16): 11459-69, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23479731

RESUMO

Aspergilli oxidize C18 unsaturated fatty acids by dioxygenase-cytochrome P450 fusion proteins to signal molecules involved in reproduction and host-pathogen interactions. Aspergillus terreus expresses linoleate 9R-dioxygenase (9R-DOX) and allene oxide synthase (AOS) activities in membrane fractions. The genome contains five genes (ATEG), which may code for a 9R-DOX-AOS fusion protein. The genes were cloned and expressed, but none of them oxidized 18:2n-6 to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE). ATEG_02036 transformed 9R-HPODE to an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. A substitution in the P450 domain (C1073S) abolished AOS activity. The N964V and N964D mutants both showed markedly reduced AOS activity, suggesting that Asn(964) may facilitate homolytic cleavage of the dioxygen bond of 9R-HPODE with formation of compound II in analogy with plant AOS (CYP74) and prostacyclin synthase (CYP8A1). ATEG_03992 was identified as 5,8-linoleate diol synthase (5,8-LDS). Replacement of Asn(878) in 5,8-LDS with leucine (N878L) mainly shifted ferryl oxygen insertion from C-5 toward C-6, but replacements of Gln(881) markedly affected catalysis. The Q881L mutant virtually abolished the diol synthase activity. Replacement of Gln(881) with Asn, Glu, Asp, or Lys residues augmented the homolytic cleavage of 8R-HPODE with formation of 10-hydroxy-8(9)-epoxy-12(Z)-octadecenoic acid (erythro/threo, 1-4:1) and/or shifted ferryl oxygen insertion from C-5 toward C-11. We conclude that homolysis and heterolysis of the dioxygen bond with formation of compound II in AOS and compound I in 5,8-LDS are influenced by Asn and Gln residues, respectively, of the I-helices. AOS of A. terreus appears to have evolved independently of CYP74 but with an analogous reaction mechanism.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Aspergillus/genética , Catálise , Proteínas Fúngicas/genética , Expressão Gênica , Oxirredutases Intramoleculares/genética , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
6.
J Lipid Res ; 54(12): 3471-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24082064

RESUMO

Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (α- and γ-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein.


Assuntos
Fusarium/enzimologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Biocatálise , Biologia Computacional , Fusarium/genética , Hidrólise , Oxirredutases Intramoleculares/química , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas Recombinantes de Fusão/química , Ácido alfa-Linolênico/metabolismo
7.
Biochim Biophys Acta ; 1821(12): 1508-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982814

RESUMO

Cyclooxygenases (COX) and 8R-dioxygenase (8R-DOX) activities of linoleate diol synthases (LDS) are homologous heme-dependent enzymes that oxygenate fatty acids by a tyrosyl radical-mediated hydrogen abstraction and antarafacial insertion of O(2). Soybean lipoxygenase-1 (sLOX-1) contains non-heme iron and oxidizes 18:2n-6 with a large deuterium kinetic isotope effect (D-KIE). The aim of the present work was to obtain further mechanistic insight into the action of these enzymes by using a series of n-6 and n-9 fatty acids and by analysis of D-KIE. COX-1 oxidized C(20) and C(18) fatty acids in the following order of rates: 20:2n-6>20:1n-6>20:3n-9>20:1n-9 and 18:3n-3≥18:2n-6>18:1n-6. 18:2n-6 and its geometrical isomer (9E,12Z)18:2 were both mainly oxygenated at C-9 by COX-1, but the 9Z,12E isomer was mostly oxygenated at C-13. A cis-configured double bond in the n-6 position therefore seems important for substrate positioning. 8R-DOX oxidized (9Z,12E)18:2 at C-8 in analogy with 18:2n-6, but the 9E,12Z isomer was mainly subject to hydrogen abstraction at C-11 and oxygen insertion at C-9 by 8R-DOX of 5,8-LDS. sLOX-1 and 13R-MnLOX oxidized [11S-(2)H]18:2n-6 with similar D-KIE (~53), which implies that the catalytic metals did not alter the D-KIE. Oxygenation of 18:2n-6 by COX-1 and COX-2 took place with a D-KIE of 3-5 as probed by incubations of [11,11-(2)H(2)]- and [11S-(2)H]18:2n-6. In contrast, the more energetically demanding hydrogen abstractions of the allylic carbons of 20:1n-6 by COX-1 and 18:1n-9 by 8R-DOX were both accompanied by large D-KIE (>20).


Assuntos
Ácidos Graxos Insaturados/metabolismo , Lipoxigenases/metabolismo , Oxigenases/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Biocatálise , Cromatografia Líquida , Deutério/química , Deutério/metabolismo , Ácidos Graxos Insaturados/química , Isomerismo , Cinética , Espectrometria de Massas , Modelos Químicos , Estrutura Molecular , Oxirredução , Oxigênio/metabolismo , Especificidade por Substrato , Fatores de Tempo
8.
Arch Biochem Biophys ; 539(1): 87-91, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24060467

RESUMO

Linoleate diol synthases (LDS) are fungal dioxygenase-cytochrome P450 fusion enzymes. They oxidize 18:2n-6 sequentially to 8R-hydroperoxylinoleic acid (8R-HPODE) and 7S,8S- or 5S,8R-dihydroxylinoleic acids (DiHODE) by intramolecular oxygen transfer. The P450 domains contain a conserved sequence, Ala-Asn-Gln-Xaa-Gln, presumably located in the I-helices. The Asn938Leu replacement of 7,8-LDS of Gaeumannomyces graminis virtually abolished and the Asn938Asp and Asn938Gln replacements reduced the hydroperoxide isomerase activity. Gln941Leu and Gln941Glu substitutions had little effects. Replacements of the homologous Asn(887) and Gln(890) residues of 5,8-LDS of Aspergillus fumigatus yielded the opposite results. Asn887Leu and Asn887Gln of 5,8-LDS retained 5,8-DiHODE as the main metabolite with an increased formation of 6,8- and 8,11-DiHODE, whereas Gln890Leu almost abolished the 5,8-LDS activity. Replacement of Gln(890) with Glu also retained 5,8-DiHODE as the main product, but shifted oxygenation from C-5 to C-7 and C-11 and to formation of epoxyalcohols by homolytic scission of 8R-HPODE. P450 hydroxylases usually contain an "acid-alcohol" pair in the I-helices for the heterolytic scission of O2 and formation of compound I (Por(+) Fe(IV)=O) and water. The function of the acid-alcohol pair appears to be replaced by two different amide residues, Asn(938) of 7,8-LDS and Gln(890) of 5,8-LDS, for heterolysis of 8R-HPODE to generate compound I.


Assuntos
Amidas/química , Oxigênio/química , Oxigenases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Ascomicetos/enzimologia , Aspergillus fumigatus/enzimologia , Biologia Computacional , Sequência Conservada , Modelos Moleculares , Oxigenases/genética , Oxigenases/metabolismo , Estrutura Secundária de Proteína
9.
J Cancer Res Clin Oncol ; 149(6): 2523-2536, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35763108

RESUMO

PURPOSE: In recent years the tumor microenvironment and its interaction with the tumor has emerged into research focus with increased attention to the composition of Tumor-infiltrating lymphocytes. We wanted to quantify the composition of Regulatory T cells (Tregs) and T helper 17 cells (Th17 cells) and their prognostic impact in high-grade serous tubo-ovarian carcinoma. METHODS: Tregs and Th17 cells were determined by immunohistochemical analysis of CD25 FoxP3 and RORγt, respectively on tissue microarrays of a cohort of 222 patients with reviewed histology and available clinical data. Expression was analyzed with Qupath for quantification and integration with clinical data enabled calculation of prognostic impact. For validation FOXP3 and RORC mRNA expression levels from 502 patients with HGSC in publicly available datasets were evaluated. RESULTS: An average percentage of 0.93 Tregs and of 0.06 Th17 cells was detected per cells in overall tissue. Optimal cut-offs were determined and higher Tregs were associated with a better overall survival in stroma (p = 0.006), tumor area (p = 0.0012) and overall tissue (p = 0.02). After accounting for well-known prognostic factors age at diagnosis, residual tumor and FIGO stage, this association remained significant for stromal Tregs with overall survival (p = 0.02). Survival analysis for Th17 cells revealed no significant association with survival rates. Moreover, lower Th17/Treg ratios had a positive impact on patient overall survival (p = 0.025 tumor, p = 0.049 stroma and p = 0.016 overall tissue). CONCLUSION: Our results outline a positive prognostic effect for higher Tregs but not for Th17 in high grade serous tubo-ovarian carcinoma.


Assuntos
Neoplasias Ovarianas , Linfócitos T Reguladores , Humanos , Feminino , Prognóstico , Linfócitos T Reguladores/patologia , Células Th17/metabolismo , Células Th17/patologia , Neoplasias Ovarianas/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Linfócitos do Interstício Tumoral/patologia , Microambiente Tumoral
10.
Virchows Arch ; 482(4): 697-706, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36367572

RESUMO

Precision oncology based on specific molecular alterations requires precise and reliable detection of therapeutic targets in order to initiate the optimal treatment. In many European countries-including Germany-assays employed for this purpose are highly diverse and not prescribed by authorities, making inter-laboratory comparison difficult. To ensure reproducible molecular diagnostic results across many laboratories and different assays, ring trials are essential and a well-established tool. Here, we describe the design and results of the ring trial for the detection of therapeutically relevant PIK3CA hotspot mutations in HR+/HER2-breast cancer tissue and liquid biopsy (LB). For PIK3CA mutation detection in tissue samples, 43 of the 54 participants (80%) provided results compliant with the reference values. Participants using NGS-based assays showed higher success rate (82%) than those employing Sanger sequencing (57%). LB testing was performed with two reference materials differing in the length of the mutated DNA fragments. Most participants used NGS-based or commercial real-time PCR assays (70%). The 167 bp fragments led to a successful PIK3CA mutation detection by only 31% of participants whereas longer fragments of 490 bp were detectable even by non-optimal assays (83%). In conclusion, the first ring trial for PIK3CA mutation detection in Germany showed that PIK3CA mutation analysis is broadly established for tissue samples and that NGS-based tests seem to be more suitable than Sanger sequencing. PIK3CA mutation detection in LB should be carried out with assays specifically designed for this purpose in order to avoid false-negative results.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Mutação/genética , Medicina de Precisão , Classe I de Fosfatidilinositol 3-Quinases/genética , Europa (Continente)
11.
Hum Pathol ; 141: 158-168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742945

RESUMO

Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Prognóstico , Cistadenocarcinoma Seroso/patologia , Intervalo Livre de Progressão , Neoplasias das Tubas Uterinas/patologia , Receptores de LDL/uso terapêutico
12.
Neoplasia ; 44: 100934, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37703626

RESUMO

BACKGROUND: The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays a crucial role in regulating the immune system's response to tumors, but its exact role in cancer, especially in high-grade serous ovarian cancer (HGSOC), remains controversial. We aimed to investigate the prognostic impact of IDO1 expression and its correlation with tumor-infiltrating lymphocytes (TILs) in HGSOC. METHODS: Immunohistochemical (IHC) staining and bioimage analysis using the QuPath software were employed to assess IDO1 protein expression in a well-characterized cohort of 507 patients with primary HGSOC. Statistical evaluation was performed using SPSS, and in silico validation considering IDO1 mRNA expression in bulk and single-cell gene expression datasets was conducted. Additionally, IDO1 expression in interferon-gamma (IFNG) stimulated HGSOC cell lines was analyzed. RESULTS: Our findings revealed that IDO1 protein and mRNA expression serve as positive prognostic markers for overall survival (OS) and progression-free survival (PFS) in HGSOC. High IDO1 expression was associated with a significant improvement in OS by 21 months (p < 0.001) and PFS by 6 months (p = 0.016). Notably, elevated IDO1 expression correlated with an increased number of CD3+ (p < 0.001), CD4+ (p < 0.001), and CD8+ TILs (p < 0.001). Furthermore, high IDO1 mRNA expression and protein level were found to be associated with enhanced responsiveness to pro-inflammatory cytokines, particularly IFNG. CONCLUSIONS: Our study provides evidence that IDO1 expression serves as a positive prognostic marker in HGSOC and is associated with an increased number of CD3+, CD4+ and CD8+ TILs. Understanding the intricate relationship between IDO1, TILs, and the tumor microenvironment may hold the key to improving outcomes in HGSOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Linfócitos do Interstício Tumoral , Prognóstico , Carcinoma Epitelial do Ovário/patologia , RNA Mensageiro , Microambiente Tumoral/genética
13.
J Ovarian Res ; 16(1): 150, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525239

RESUMO

BACKGROUND: Mechanisms of development and progression of high-grade serous ovarian cancer (HGSOC) are poorly understood. EVI1 and PARP1, part of TGF-ß pathway, are upregulated in cancers with DNA repair deficiencies with DNA repair deficiencies and may influce disease progression and survival. Therefore we questioned the prognostic significance of protein expression of EVI1 alone and in combination with PARP1 and analyzed them in a cohort of patients with HGSOC. METHODS: For 562 HGSOC patients, we evaluated EVI1 and PARP1 expression by immunohistochemical staining on tissue microarrays with QuPath digital semi-automatic positive cell detection. RESULTS: High EVI1 expressing (> 30% positive tumor cells) HGSOC were associated with improved progression-free survival (PFS) (HR = 0.66, 95% CI: 0.504-0.852, p = 0.002) and overall survival (OS) (HR = 0.45, 95% CI: 0.352-0.563, p < 0.001), including multivariate analysis. Most interestingly, mutual high expression of both proteins identifies a group with particularly good prognosis. Our findings were proven technically and clinically using bioinformatical data sets for single-cell sequencing, copy number variation and gene as well as protein expression. CONCLUSIONS: EVI1 and PARP1 are robust prognostic biomarkers for favorable prognosis in HGSOC and imply further research with respect to their reciprocity.


Assuntos
Proteína do Locus do Complexo MDS1 e EVI1 , Neoplasias Ovarianas , Poli(ADP-Ribose) Polimerase-1 , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Biomarcadores Tumorais/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética , Poli(ADP-Ribose) Polimerase-1/genética , Prognóstico , Pessoa de Meia-Idade
14.
Biochim Biophys Acta ; 1811(3): 138-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21167311

RESUMO

Manganese lipoxygenase (MnLOX) oxidizes (11R)-hydroperoxylinolenic acid (11R-HpOTrE) to a peroxyl radical. Our aim was to compare the enzymatic oxidation of 11R-HpOTrE and octadecenoic acids with LOO-H and allylic C-H bond dissociation enthalpies of ~88 and ~87kcal/mol. Mn(III)LOX oxidized (11Z)-, (12Z)-, and (13Z)-18:1 to hydroperoxides with R configuration, but this occurred at insignificant rates (<1%) compared to 11R-HpOTrE. We next examined whether transitional metals could mimic this oxidation. Ce(4+) and Mn(3+) transformed 11R-HpOTrE to hydroperoxides at C-9 and C-13 via oxidation to a peroxyl radical at C-11, whereas Fe(3+) was a poor catalyst. Our results suggest that MnLOX oxidizes bis-allylic hydroperoxides to peroxyl radicals in analogy with Ce(4+) and Mn(3+). The enzymatic oxidation likely occurs by proton-coupled electron transfer of the electron from the hydroperoxide anion to Mn(III) and H(+) to the catalytic base, Mn(III)OH(-). Hydroperoxides abolish the kinetic lag times of MnLOX and FeLOX by oxidation of their metal centers, but 11R-HpOTrE was isomerized by MnLOX to (13R)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13R-HpOTrE) with a kinetic lag time. This lag time could be explained by two competing transformations, dehydration of 11R-HpOTrE to 11-ketolinolenic acid and oxidation of 11R-HpOTrE to peroxyl radical; the reaction rate then increases as 13R-HpOTrE oxidizes MnLOX with subsequent formation of two epoxyalcohols. We conclude that oxidation of octadecenoic acids and bis-allylic hydroperoxides occurs by different mechanisms, which likely reflect the nature of the hydrogen bonds, steric factors, and the redox potential of the Mn(III) center.


Assuntos
Peróxidos Lipídicos/química , Lipoxigenase/química , Ácidos Esteáricos/química , Animais , Catálise , Domínio Catalítico , Masculino , Manganês/química , Oxirredução , Ovinos
15.
Pathol Res Pract ; 229: 153689, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34844086

RESUMO

Mucosal melanomas arise from the mucosal lining of various organs. Their etiology is currently unknown and there are no tissue-based methods to differentiate it from cutaneous melanomas. Furthermore, prognostic and predictive markers (e.g. for immune checkpoint inhibition) are lacking. In this study, we aimed to assess the protein expression levels of cell cycle-associated proteins and immune checkpoint markers in a cohort of mucosal melanomas in comparison to cutaneous melanomas and evaluated the effect of potential regulatory mechanisms. We performed immunohistochemistry, DNA methylation analysis and copy number profiling of 47 mucosal and 28 cutaneous melanoma samples. Protein expression of CD117, Ki67 and p16 was higher in mucosal melanomas, while BCL2, Cyclin D1, PD-1 and PD-L1 were overexpressed in cutaneous melanomas. CDKN2A deletions were the most prevalent numeric chromosomal alterations in both mucosal and cutaneous melanoma and were associated with decreased p16 expression. KIT was frequently amplified in mucosal melanomas, but not associated with CD117 expression. On the other hand, amplification of CCND1 lead to Cyclin D1 overexpression. In mucosal melanoma patients high PD-1 expression and high PD-L1 promoter methylation levels were associated with improved survival. PD-L1 expression correlated with response to immune checkpoint inhibitor therapy in the combined group of melanoma patients. Mucosal and cutaneous melanomas show different expression levels of cell cycle-associated and immunomodulatory proteins that are partially regulated by DNA methylation and copy number alterations. PD-1 expression and PD-L1 promoter methylation levels might be a prognostic marker for mucosal melanomas.


Assuntos
Antígeno B7-H1/fisiologia , Ciclo Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Imunidade/genética , Melanoma/genética , Melanoma/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa , Dados Preliminares , Adulto Jovem
16.
Cancers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230542

RESUMO

RGS2 regulates G-protein signaling by accelerating hydrolysis of GTP and has been identified as a potentially druggable target in carcinomas. Since the prognosis of patients with high-grade serous ovarian carcinoma (HGSOC) remains utterly poor, new therapeutic options are urgently needed. Previous in vitro studies have linked RGS2 suppression to chemoresistance in HGSOC, but in situ data are still missing. In this study, we characterized the expression of RGS2 and its relation to prognosis in HGSOC on the protein level by immunohistochemistry in 519 patients treated at Charité, on the mRNA level in 299 cases from TCGA and on the single-cell level in 19 cases from publicly available datasets. We found that RGS2 is barely detectable on the mRNA level in both bulk tissue (median 8.2. normalized mRNA reads) and single-cell data (median 0 normalized counts), but variably present on the protein level (median 34.5% positive tumor cells, moderate/strong expression in approximately 50% of samples). Interestingly, low expression of RGS2 had a negative impact on overall survival (p = 0.037) and progression-free survival (p = 0.058) on the protein level in lower FIGO stages and in the absence of residual tumor burden. A similar trend was detected on the mRNA level. Our results indicated a significant prognostic impact of RGS2 protein suppression in HGSOC. Due to diverging expression patterns of RGS2 on mRNA and protein levels, posttranslational modification of RGS2 is likely. Our findings warrant further research to unravel the functional role of RGS2 in HGSOC, especially in the light of new drug discovery.

17.
Nat Commun ; 13(1): 7148, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443295

RESUMO

The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs.


Assuntos
Carcinoma , Metilação de DNA , Humanos , Metilação de DNA/genética , Proteômica , Reprodutibilidade dos Testes , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição
18.
J Lipid Res ; 52(11): 1995-2004, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21852690

RESUMO

Seven Z-octadecenoic acids having the double bond located in positions 6Z to 13Z were photooxidized. The resulting hydroperoxy-E-octadecenoic acids [HpOME(E)] were resolved by chiral phase-HPLC-MS, and the absolute configurations of the enantiomers were determined by gas chromatographic analysis of diastereoisomeric derivatives. The MS/MS/MS spectra showed characteristic fragments, which were influenced by the distance between the hydroperoxide and carboxyl groups. These fatty acids were then investigated as substrates of cyclooxygenase-1 (COX-1), manganese lipoxygenase (MnLOX), and the (8R)-dioxygenase (8R-DOX) activities of two linoleate diol synthases (LDS) and 10R-DOX. COX-1 and MnLOX abstracted hydrogen at C-11 of (12Z)-18:1 and C-12 of (13Z)-18:1. (11Z)-18:1 was subject to hydrogen abstraction at C-10 by MnLOX and at both allylic positions by COX-1. Both allylic hydrogens of (8Z)-18:1 were also abstracted by 8R-DOX activities of LDS and 10R-DOX, but only the allylic hydrogens close to the carboxyl groups of (11Z)-18:1 and (12Z)-18:1. 8R-DOX also oxidized monoenoic C(14)-C(20) fatty acids with double bonds at the (9Z) position, suggesting that the length of the omega end has little influence on positioning for oxygenation. We conclude that COX-1 and MnLOX can readily abstract allylic hydrogens of octadecenoic fatty acids from C-10 to C-12 and 8R-DOX from C-7 and C-12.


Assuntos
Dioxigenases/metabolismo , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Animais , Ascomicetos/enzimologia , Aspergillus fumigatus/enzimologia , Biocatálise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Dioxigenases/genética , Heme/metabolismo , Espectrometria de Massas , Oxirredução , Processos Fotoquímicos , Mutação Puntual , Deleção de Sequência , Ovinos , Ácidos Esteáricos/isolamento & purificação , Estereoisomerismo , Especificidade por Substrato
19.
Biochim Biophys Acta ; 1801(4): 503-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20045744

RESUMO

Aspergilli express fusion proteins of an animal haem peroxidase domain with fatty acid dioxygenase (DOX) activity ( approximately 600 amino acids) and a functional or non-functional hydroperoxide isomerase/cytochrome P450 domain ( approximately 500 amino acids with EXXR and GPHXCLG motifs). 5,8-Linoleate diol synthases (LDS; ppoA) and 10R-DOX (ppoC) of Aspergillusnidulans and A. fumigatus belong to this group. Our objective was to determine the oxylipins formed from linoleic acid by A. clavatus and their mechanism of biosynthesis. A. clavatus oxidized linoleic acid to (8R)-hydroperoxylinoleic acid (8R-HPODE), (10R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE), and to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxylinoleic acids (DiHODE) as major products. This occurred by abstraction of the pro-S hydrogen at C-8 and antarafacial dioxygenation at C-8 or at C-10 with double bond migration. 8R-HPODE was then isomerized to 5S,8R-DiHODE and to 8R,11S-DiHODE by abstraction of the pro-S hydrogens at C-5 and C-11 of 8R-HPODE, respectively, followed by suprafacial oxygenation. The genome of A. clavatus codes for two enzymes, which can be aligned with >65% amino acid identity to 10R-DOX and 5,8-LDS, respectively. The 5,8-LDS homologue likely forms and isomerizes 8R-HPODE to 5S,8R-DiHODE. A third gene (ppoB) codes for a protein which carries a serine residue at the cysteine position of the P450 motif. This Cys to Ser replacement is known to abolish P450 2B4 catalysis and the hydroperoxide isomerase activity of 5,8-LDS, suggesting that ppoB of A. clavatus may not be involved in the biosynthesis of 8R,11S-DiHODE.


Assuntos
Aspergillus/enzimologia , Dioxigenases/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxigenases/metabolismo , Catálise , Dioxigenases/genética , Oxirredutases Intramoleculares/genética , Ácido Linoleico/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Oxigenases/genética , Oxilipinas/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
20.
Arch Biochem Biophys ; 506(2): 216-22, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21130068

RESUMO

5,8-Linoleate diol synthase (5,8-LDS) of Aspergillus fumigatus was cloned, expressed, and compared with 7,8-LDS of the Take-all fungus. Replacements of Tyr and Cys in the conserved YRWH and FXXGPHXCLG sequences abolished 8R-dioxygenase (8-DOX) and hydroperoxide isomerase activities, respectively. The predicted α-helices of LDS were aligned with α-helices of cyclooxygenase-1 (COX-1) to identify the 8-DOX domains. N-terminal expression constructs of 5,8- and 7,8-LDS (674 of 1079, and 673 of 1165 residues), containing one additional α-helix compared to cyclooxygenase-1, yielded prominent 8R-DOX activities with apparently unchanged or slightly lower substrate affinities, respectively. Val-328 of 5,8-LDS did not influence the position of oxygenation in contrast to the homologous residues Val-349 of COX-1 and Leu-384 of 10R-dioxygenase. We conclude that ~675 amino acids are sufficient to support 8-DOX activity.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Ciclo-Oxigenase 1/genética , Dioxigenases/genética , Proteínas Fúngicas/genética , Oxigenases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxigenases/química , Oxigenases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA