Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136235

RESUMO

E-cigarette use has become widespread, and its effects on airway inflammation and disease are not fully delineated. E-cigarette vapor extract (EVE) profoundly affects neutrophil function. We hypothesized that EVE also alters eosinophil function and thus could impact allergic airways disease. We employed RNA-sequencing to measure the ex vivo effect of EVE components on human eosinophil transcription. Blood eosinophils from 9 non-vaping subjects without asthma were isolated by negative selection. Cells were incubated for 48 hours with EVE consisting of glycerin, propylene glycol and nicotine (EVE+), EVE without nicotine ("EVE-"), air-exposed media termed Extract Buffer (EB), or untreated media. Bulk RNA-sequencing was performed. Transcriptomic analysis revealed that the EB, EVE-, and EVE+ conditions showed highly variable gene expression with respect to No Treatment and each other. Differential gene expression analysis comparing a combination of EVE+, EVE-, and EB revealed 3,030 differentially expressed genes (DEG) with adjusted p value < 0.05 and log2 fold change >0.5 or <0.5. There were 645 DEG between EB and EVE-, 1,713 between EB and EVE+, and 404 between EVE- and EVE+. Gene set enrichment analysis demonstrated that DEG between both EVE+ and EVE- and the EB control were positively enriched for heme metabolism and apoptosis and negatively enriched TNFα signaling, IFNγ signaling, and inflammatory response. Thus, EVE significantly alters eosinophil metabolic and inflammatory pathways, mediated by propylene glycol and glycerin with both enhancing and unique effects of nicotine. This study motivates further research into the pathogenic effects of vaping on airway eosinophils and allergic airways disease.

3.
Elife ; 62017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585919

RESUMO

Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli.


Assuntos
Células Endoteliais/fisiologia , Redes Reguladoras de Genes , Células Cultivadas , Humanos , Polimorfismo de Nucleotídeo Único , Elementos Reguladores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA