Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Ecol ; 32(4): 854-866, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461113

RESUMO

Interspecific gene flow (introgression) is an important source of new genetic variation, but selection against it can reinforce reproductive barriers between interbreeding species. We used an experimental approach to trace the role of chromosomal inversions and incompatibility genes in preventing introgression between two partly sympatric Drosophila virilis group species, D. flavomontana and D. montana. We backcrossed F1 hybrid females from a cross between D. flavomontana female and D. montana male with the males of the parental species for two generations and sequenced pools of parental strains and their reciprocal second generation backcross (BC2 mon and BC2 fla) females. Contrasting the observed amount of introgression (mean hybrid index, HI) in BC2 female pools along the genome to simulations under different scenarios allowed us to identify chromosomal regions of restricted and increased introgression. We found no deviation from the HI expected under a neutral null model for any chromosome for the BC2 mon pool, suggesting no evidence for genetic incompatibilities in backcrosses towards D. montana. In contrast, the BC2 fla pool showed high variation in the observed HI between different chromosomes, and massive reduction of introgression on the X chromosome (large X-effect). This observation is compatible with reduced recombination combined with at least one dominant incompatibility locus residing within the X inversion(s). Overall, our study suggests that genetic incompatibilities arising within chromosomal inversions can play an important role in speciation.


Assuntos
Inversão Cromossômica , Drosophila , Animais , Feminino , Masculino , Inversão Cromossômica/genética , Drosophila/genética , Cromossomo X/genética , Reprodução
2.
J Exp Biol ; 222(Pt 20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31511345

RESUMO

The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, but how the multiple changes involved in this and other photoperiodically regulated traits are inter-related is not well understood. We performed quasinatural selection on reproduction under short photoperiods in a northern fly species, Drosophila montana, to trace the effects of photoperiodic selection on traits regulated by the photoperiodic timer and/or by a circadian clock system. Selection changed several traits associated with reproductive diapause, including the critical day length for diapause (CDL), the frequency of diapausing females under photoperiods that deviate from daily 24 h cycles and cold tolerance, towards the phenotypes typical of lower latitudes. However, selection had no effect on the period of free-running locomotor activity rhythm regulated by the circadian clock in fly brain. At a genomic level, selection induced extensive divergence from the control line in 16 gene clusters involved in signal transduction, membrane properties, immunologlobulins and development. These changes resembled those detected between latitudinally divergent D. montana populations in the wild and involved SNP divergence associated with several genes linked with diapause induction. Overall, our study shows that photoperiodic selection for reproduction under short photoperiods affects diapause-associated traits without disrupting the central clock network generating circadian rhythms in fly locomotor activity.


Assuntos
Diapausa/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Variação Genética , Genoma de Inseto , Fotoperíodo , Adaptação Fisiológica , Animais , Cromossomos de Insetos/genética , Ritmo Circadiano/fisiologia , Temperatura Baixa , Feminino , Modelos Lineares , Locomoção/fisiologia , Fenótipo , Característica Quantitativa Herdável , Reprodução
3.
Mol Ecol ; 24(11): 2809-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877951

RESUMO

Seasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer. The analysis revealed a unique QTL for diapause induction on the X chromosome and several QTL for this and the other measured traits on the 4th chromosome. Flies' cold tolerance, egg-to-eclosion development time and juvenile body weight had several QTL also on the 2nd, 3rd and 5th chromosome, some of the peaks overlapping with each other. These results suggest that while the downstream output of females' photoperiodic diapause response is partly under a different genetic control from that of the other traits in the given day length, all traits also share some QTL, possibly involving genes with pleiotropic effects and/or multiple tightly linked genes. Nonoverlapping QTL detected for some of the traits also suggest that the traits are potentially capable of independent evolution, even though this may be restricted by epistatic interactions and/or correlations and trade-offs between the traits.


Assuntos
Drosophila/genética , Fotoperíodo , Locos de Características Quantitativas , Animais , Canadá , Cruzamentos Genéticos , Drosophila/fisiologia , Feminino , Finlândia , Ligação Genética , Genética Populacional , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Estações do Ano
4.
J Insect Physiol ; 150: 104556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598869

RESUMO

Insect adaptation to climatic conditions at different latitudes has required changes in life-history traits linked with survival and reproduction. Several species, including Drosophila montana, show robust latitudinal variation in the critical day length (CDL), below which more than half of the emerging females enter reproductive diapause at a given temperature. Here we used a novel approach to find out whether D. montana also shows latitudinal variation in the critical temperature (CTemp), above which the photoperiodic regulation of diapause is disturbed so that the females develop ovaries in daylengths that are far below their CDL. We estimated CTemp for 53 strains from different latitudes on 3 continents after measuring their diapause proportions at a range of temperatures in 12 h daylength (for 29 of the strains also in continuous darkness). In 12 h daylength, CTemp increased towards high latitudes alongside an increase in CDL, and in 3 high-latitude strains diapause proportion exceeded 50% in all temperatures. In continuous darkness, the diapause proportion was above 50% in the lowest temperature(s) in only 9 strains, all of which came from high latitudes. In the second part of the study, we measured changes in CTemp and CDL in a selection experiment favouring reproduction in short daylength (photoperiodic selection) and by exercising selection for females that reproduce in LD12:12 at low temperature (photoperiodic and temperature selection). In both experiments selection induced parallel changes in CDL and CTemp, confirming correlations seen between these traits along latitudinal clines. Overall, our findings suggest that selection towards strong photoperiodic diapause and long CDL at high latitudes has decreased the dependency of D. montana diapause on environmental temperature. Accordingly, the prevalence and timing of the diapause of D. montana is likely to be less vulnerable to climate warming in high- than low-latitude populations.

5.
J Exp Biol ; 215(Pt 16): 2891-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22837463

RESUMO

Coping with seasonal changes in temperature is an important factor underlying the ability of insects to survive over the harsh winter conditions in the northern temperate zone, and only a few drosophilids have been able to colonize sub-polar habitats. Information on their winter physiology is needed as it may shed light on the adaptive mechanisms of overwintering when compared with abundant data on the thermal physiology of more southern species, such as Drosophila melanogaster. Here we report the first seasonal metabolite analysis in a Drosophila species. We traced changes in the cold tolerance and metabolomic profiles in adult Drosophila montana flies that were exposed to thermoperiods and photoperiods similar to changes in environmental conditions of their natural habitat in northern Finland. The cold tolerance of diapausing flies increased noticeably towards the onset of winter; their chill coma recovery times showed a seasonal minimum between late autumn and early spring, whereas their survival after cold exposure remained high until late spring. The flies had already moderately accumulated glucose, trehalose and proline in autumn, but the single largest change occurred in myo-inositol concentrations. This increased up to 400-fold during the winter and peaked at 147 nmol mg(-1) fresh mass, which is among the largest reported accumulations of this compound in insects.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Drosophila/metabolismo , Inositol/metabolismo , Metaboloma , Metabolômica , Estações do Ano , Animais , Clima , Feminino , Finlândia , Histidina/metabolismo , Ácido Láctico/metabolismo , Masculino , Fotoperíodo , Análise de Componente Principal , Prolina/metabolismo , Estresse Fisiológico , Temperatura
6.
Fly (Austin) ; 16(1): 85-104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35060806

RESUMO

Living in high latitudes and altitudes sets specific requirements on species' ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.


Assuntos
Drosophila , Isolamento Reprodutivo , Adaptação Fisiológica , Animais , Drosophila/genética , Especiação Genética , Fotoperíodo , Reprodução
7.
J Biol Rhythms ; 37(5): 516-527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924307

RESUMO

Photoperiodic reproductive diapause is an essential part of female life cycle in several insect species living on high latitudes, where overwintering in reproductive stage involves high risks for survival and progeny production. The sensitive period (SP), during which photoperiodic cues can trigger the switch from direct development to diapause, can last from a few hours or days after emergence to the entire life span of females. Moreover, in some species, sexually mature females can enter post-reproductive diapause as a response to decreasing day length and/or temperature. We studied the duration of SP for diapause induction and the females' ability to enter post-reproductive diapause at short day lengths in Drosophila montana strains from different latitudes in Europe, North America, and Japan. Our study shows that the females of this species have a life-long SP and that they retain an ability to switch between reproduction and diapause as a response to back-and-forth changes in day length for at least 3 months. D. montana strains from different latitudes showed high variation in females' ability to enter post-reproductive diapause; females of the southern strains generally requiring longer time and/or lower temperature to enter this stage than those of the northern strains. Moreover, the proportion of females that switched to post-reproductive diapause in 3 weeks in short day conditions at 16 °C showed positive correlation with the critical day length (CDL) for diapause induction and the latitudinal and continental origin of the strains. Life-long SP increases females' flexibility to respond to short-term changes in environmental conditions and enables reproducing females to switch to post-reproductive diapause when the days get shorter and colder toward the autumn. This ability can play a major role in species phenology and should be taken into account in theoretical and empirical studies on insect adaptation to seasonal variation.


Assuntos
Diapausa , Drosophila , Animais , Ritmo Circadiano , Drosophila/fisiologia , Feminino , Montana , Fotoperíodo , Reprodução
8.
Evol Lett ; 6(6): 537-551, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579165

RESUMO

Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.

9.
BMC Evol Biol ; 11: 68, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21396136

RESUMO

BACKGROUND: Widely distributed species with populations adapted to different environmental conditions can provide valuable opportunities for tracing the onset of reproductive incompatibilities and their role in the speciation process. Drosophila montana, a D. virilis group species found in high latitude boreal forests in Nearctic and Palearctic regions around the globe, could be an excellent model system for studying the early stages of speciation, as a wealth of information concerning this species' ecology, mating system, life history, genetics and phylogeography is available. However, reproductive barriers between populations have hereto not been investigated. RESULTS: We report both pre- and postmating barriers to reproduction between flies from European (Finnish) and North American (Canadian) populations of Drosophila montana. Using a series of mate-choice designs, we show that flies from these two populations mate assortatively (i.e., exhibit significant sexual isolation) while emphasizing the importance of experimental design in these kinds of studies. We also assessed potential postmating isolation by quantifying egg and progeny production in intra- and interpopulation crosses and show a significant one-way reduction in progeny production, affecting both male and female offspring equally. CONCLUSION: We provide evidence that allopatric D. montana populations exhibit reproductive isolation and we discuss the potential mechanisms involved. Our data emphasize the importance of experimental design in studies on premating isolation between recently diverged taxa and suggest that postmating barriers may be due to postcopulatory-prezygotic mechanisms. D. montana populations seem to be evolving multiple barriers to gene flow in allopatry and our study lays the groundwork for future investigations of the genetic and phenotypic mechanisms underlying these barriers.


Assuntos
Drosophila/genética , Drosophila/fisiologia , Genética Populacional , Reprodução/genética , Animais , Canadá , Feminino , Fertilidade , Finlândia , Especiação Genética , Masculino , Preferência de Acasalamento Animal , Fenótipo
10.
J Biol Rhythms ; 36(3): 226-238, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33745359

RESUMO

Insect species with a wide distribution offer a great opportunity to trace latitudinal variation in the photoperiodic regulation of traits important in reproduction and stress tolerances. We measured this variation in the photoperiodic time-measuring system underlying reproductive diapause in Drosophila montana, using a Nanda-Hamner (NH) protocol. None of the study strains showed diel rhythmicity in female diapause proportions under a constant day length (12 h) and varying night lengths in photoperiods ranging from 16 to 84 h at 16°C. In the northernmost strains (above 55°N), nearly all females entered diapause under all photoperiods and about half of them even in continuous darkness, while the females of the southern strains showed high diapause proportions only in the circadian 24 h photoperiod. Significant correlation between the strains' mean diapause proportions in ≥ 24 h photoperiods and critical day length (CDL; half of the females enter diapause) suggests at least partial causal connection between the traits. Interestingly, females of the northern strains entered diapause even in ≤ 24 h photoperiods, where the night length was shorter than their critical night length (24 h - CDL), but where the females experienced a higher number of Light:Dark cycles than in 24 h photoperiods. NH experiments, performed on the control and selection lines in our previous selection experiment, and completed here, gave similar results and confirmed that selection for shorter, southern-type CDL decreases female diapausing rate in non-circadian photoperiods. Overall, our study shows that D. montana females measure night length quantitatively, that the photoperiodic counter may play a prominent but slightly different role in extra short and extra long photoperiods and that northern strains show high stability against perturbations in the photoperiod length and in the presence of LD cycles. These features are best explained by the quantitative versions of the damped external coincidence model.


Assuntos
Ritmo Circadiano , Drosophila , Animais , Feminino , Masculino , Fotoperíodo , Reprodução
11.
BMC Ecol Evol ; 21(1): 117, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112109

RESUMO

BACKGROUND: Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. RESULTS: We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. CONCLUSIONS: Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance.


Assuntos
Relógios Circadianos , Animais , Relógios Circadianos/genética , Temperatura Baixa , Sinais (Psicologia) , Drosophila/genética , América do Norte
12.
BMC Ecol ; 10: 3, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20122138

RESUMO

BACKGROUND: Insect diapause is an important biological process which involves many life-history parameters important for survival and reproductive fitness at both individual and population level. Drosophila montana, a species of D. virilis group, has a profound photoperiodic reproductive diapause that enables the adult flies to survive through the harsh winter conditions of high latitudes and altitudes. We created a custom-made microarray for D. montana with 101 genes known to affect traits important in diapause, photoperiodism, reproductive behaviour, circadian clock and stress tolerance in model Drosophila species. This array gave us a chance to filter out genes showing expression changes during photoperiodic reproductive diapause in a species adapted to live in northern latitudes with high seasonal changes in environmental conditions. RESULTS: Comparisons among diapausing, reproducing and young D. montana females revealed expression changes in 24 genes on microarray; for example in comparison between diapausing and reproducing females one gene (Drosophila cold acclimation gene, Dca) showed up-regulation and 15 genes showed down-regulation in diapausing females. Down-regulation of seven of these genes was specific to diapause state while in five genes the expression changes were linked with the age of the females rather than with their reproductive status. Also, qRT-PCR experiments confirmed couch potato (cpo) gene to be involved in diapause of D. montana. CONCLUSIONS: A candidate gene microarray proved to offer a practical and cost-effective way to trace genes that are likely to play an important role in photoperiodic reproductive diapause and further in adaptation to seasonally varying environmental conditions. The present study revealed two genes, Dca and cpo, whose role in photoperiodic diapause in D. montana is worth of studying in more details. Also, further studies using the candidate gene microarray with more specific experimental designs and target tissues may reveal additional genes with more restricted expression patterns.


Assuntos
Drosophila/genética , Perfilação da Expressão Gênica , Genes de Insetos , Fotoperíodo , Animais , Regulação para Baixo , Drosophila/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
13.
Insect Sci ; 27(2): 304-316, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30176124

RESUMO

Environmental cues, mainly photoperiod and temperature, are known to control female adult reproductive diapause in several insect species. Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season. Male diapause (a reversible inability to inseminate receptive females) has been studied much less than female diapause. However, if the males maximized their chances to fertilize females while minimizing their energy expenditure, they would be expected to be in diapause at the same time as females. We investigated Drosophila montana male mating behavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive. We also found that males reared under long-day conditions (reproducing individuals) court reproducing postdiapause females, but not diapausing ones. The diapausing flies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones, which presumably increase their survival under stressful conditions, but at the same time decrease their attractiveness. Our study shows that the mating behavior of females and males is well coordinated during and after overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.


Assuntos
Diapausa de Inseto , Drosophila/metabolismo , Hidrocarbonetos/metabolismo , Comportamento Sexual Animal , Animais , Feminino , Masculino , Oviparidade , Reprodução
14.
BMC Evol Biol ; 9: 132, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19523190

RESUMO

BACKGROUND: Conflicts of interest between the sexes are increasingly recognized as an engine driving the (co-)evolution of reproductive traits. The reproductive behaviour of Drosophila montana suggests the occurrence of sexual conflict over the duration of copulation. During the last stages of copulation, females vigorously attempt to dislodge the mounting male, while males struggle to maintain genital contact and often successfully extend copulations far beyond the females' preferred duration. RESULTS: By preventing female resistance, we show that females make a substantial contribution towards shortening copulations. We staged matings under different sex ratio conditions, and provide evidence that copulation duration is a form of male reproductive investment that responds to the perceived intensity of sperm competition as predicted by game theoretical models. Further, we investigated potential benefits to persistent males, and costs to females coerced into longer matings. While males did not benefit in terms of increased progeny production by protracting copulation, female remating was delayed after long first copulations. CONCLUSION: Copulation time is a trait subject to sexual conflict. Mating durations exceeding female optima serve males as a form of 'extended mate guarding': by inducing mating refractoriness in the female, a male extends the time over which its sperm is exclusively used to sire progeny and reduces the likelihood of the female being reinseminated by a competitor.


Assuntos
Evolução Biológica , Copulação , Drosophila/fisiologia , Seleção Genética , Animais , Feminino , Masculino , Razão de Masculinidade , Espermatozoides/fisiologia
15.
J Insect Physiol ; 116: 77-89, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004669

RESUMO

Selection experiments offer an efficient way to study the evolvability of traits that play an important role in insects' reproduction and/or survival and to trace correlations and trade-offs between them. We have exercised bi-directional selection on Drosophila montana flies' pre-adult development time under constant light and temperature conditions for 10 generations and traced the indirect effects of this selection on females' diapause induction under different day lengths, as well as on the body weight and cold tolerance of both sexes. Overall, selection was successful towards slow, but not towards fast development. However, all fast selection line replicates showed at the end of selection increased variance in females' photoperiodic diapause response and about one hour increase in the critical day (CDL), where more than 50% of emerging females enter diapause. Indirect effects of selection on flies' body weight and cold-tolerance were less clear, as the flies of the slow selection line were significantly heavier and less cold-tolerant than the control line flies after five generations of selection, but lighter and more cold-tolerant at the end of selection. Changes in females' diapause induction resulting from selection for fast development could be due to common metabolic pathways underlying these traits, collaboration of circadian clock and photoperiodic timer and/or by the interaction between the endocrine and circadian systems.


Assuntos
Diapausa de Inseto/genética , Drosophila/crescimento & desenvolvimento , Fotoperíodo , Seleção Genética/fisiologia , Aclimatação/genética , Animais , Peso Corporal/genética , Temperatura Baixa , Drosophila/genética , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Pupa/genética , Pupa/crescimento & desenvolvimento
16.
Evolution ; 73(6): 1182-1199, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30957216

RESUMO

The impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species' interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances. All barriers between D. montana females and D. flavomontana males were nearly complete, while in the reciprocal cross strong postzygotic isolation was accompanied by prezygotic barriers whose strength varied according to population composition. Sexual isolation between D. flavomontana females and D. montana males was increased in long-established sympatric populations, where D. flavomontana is abundant, while postmating prezygotic (PMPZ) barriers were stronger in populations where this species is a new invader and still rare and where female discrimination against heterospecific males was lower. Strengthening of sexual and PMPZ barriers in this cross also induced cascade reinforcement of respective barriers between D. flavomontana populations, which is a classic signature of reinforcement process.


Assuntos
Evolução Biológica , Drosophila/fisiologia , Isolamento Reprodutivo , Comportamento Sexual Animal , Animais , Densidade Demográfica , Simpatria
17.
BMC Evol Biol ; 8: 59, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18298823

RESUMO

BACKGROUND: The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. RESULTS: Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. CONCLUSION: The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective.


Assuntos
Drosophila/genética , Variação Genética , Animais , DNA Mitocondrial/genética , Especiação Genética , Geografia , Haplótipos , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
18.
Genome Biol Evol ; 10(8): 2086-2101, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010752

RESUMO

The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales.


Assuntos
Drosophila/classificação , Drosophila/genética , Aclimatação , Animais , Temperatura Baixa , Diapausa , Drosophila/fisiologia , Genoma de Inseto , Anotação de Sequência Molecular , Filogenia
19.
Evolution ; 61(6): 1481-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542854

RESUMO

Understanding the variation within and between populations in important male mating traits and female preferences is crucial to theories concerning the origin of sexual isolation by coevolution or other processes. There have been surprisingly few studies on the extent of variation and covariation within and between populations, especially where the evolutionary relationships between populations are understood. Here we examine variation in female preferences and a sexually selected male song trait, the carrier frequency of the song, within and between populations from different phylogeographic clusters of Drosophila montana. Song is obligatory for successful mating in this species, and both playback and field studies implicate song carrier frequency as the most important parameter in male song. Carrier frequency varied among three recently collected populations from Oulanka (Finland), Vancouver (Canada), and Colorado (central United States), which represent the main phylogeographic groups in D. montana. Males from Colorado had the most distinct song frequency, which did not follow patterns of genetic differentiation. There was considerable variation in preference functions within, and some variation between, populations. Surprisingly, females from three lines from Colorado seem to have preferences disfavoring the extreme male trait found in this population. We discuss sources of selection on male song and female preference.


Assuntos
Drosophila/fisiologia , Preferência de Acasalamento Animal , Filogenia , Vocalização Animal , Animais , Canadá , Colorado , Drosophila/classificação , Feminino , Finlândia , Geografia , Masculino , Dinâmica Populacional
20.
Hereditas ; 144(5): 213-21, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18031356

RESUMO

Species of the D. virilis group are widely used in evolutionary research, but the individuals of different species are difficult to distinguish from each other morphologically. We constructed a fast and easy microsatellite-based identification method for the species of the group occurring sympatrically in northern Europe. The neighbor joining tree based on 14 microsatellite loci also gave a good resolution of the species divergence pattern in the whole group.


Assuntos
Drosophila/genética , Especiação Genética , Repetições de Microssatélites , Animais , Drosophila/classificação , Métodos , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA