Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEBS Open Bio ; 11(6): 1719-1730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33979025

RESUMO

Endothelial cell function and metabolism are closely linked to differential use of energy substrate sources and combustion. While endothelial cell migration is promoted by 2-phosphofructokinase-6/fructose-2,6-bisphosphatase (PFKFB3)-driven glycolysis, proliferation also depends on fatty acid oxidation for dNTP synthesis. We show that inflammatory activation of human umbilical vein endothelial cells (HUVECs) by interleukin-1ß (IL-1ß), despite inhibiting proliferation, promotes a shift toward more metabolically active phenotype. This was reflected in increased cellular glucose uptake and consumption, which was preceded by an increase in PFKFB3 mRNA and protein expression. However, despite a modest increase in extracellular acidification rates, the increase in glycolysis did not correlate with extracellular lactate accumulation. Accordingly, IL-1ß stimulation also increased oxygen consumption rate, but without a concomitant rise in fatty acid oxidation. Together, this suggests that the IL-1ß-stimulated energy shift is driven by shunting of glucose-derived pyruvate into mitochondria to maintain elevated oxygen consumption in HUVECs. We also revealed a marked donor-dependent variation in the amplitude of the metabolic response to IL-1ß and postulate that the donor-specific response should be taken into account when considering targeting dysregulated endothelial cell metabolism.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Apoptose , Proliferação de Células , Células Cultivadas , Glicólise , Humanos , Interleucina-1beta/metabolismo , Consumo de Oxigênio
2.
J Invest Dermatol ; 139(1): 81-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120934

RESUMO

Although inflammation has traditionally been considered a response to either exogenous pathogen-associated signals or endogenous signals of cell damage, other perturbations of homeostasis, generally referred to as stress, may also induce inflammation. The relationship between stress and inflammation is, however, not well defined. Here, we describe a mechanism of IL-33 induction driven by hypo-osmotic stress in human keratinocytes and also report interesting differences when comparing the responsiveness of other inflammatory mediators. The induction of IL-33 was completely dependent on EGFR and calcium signaling, and inhibition of calcium signaling not only abolished IL-33 induction but also dramatically changed the transcriptional pattern of other cytokines upon hypo-osmotic stress. IL-33 was not secreted but instead showed nuclear sequestration, conceivably acting as a failsafe mechanism whereby it is induced by potential danger but released only upon more extreme homeostatic perturbations that result in cell death. Finally, stress-induced IL-33 was also confirmed in an ex vivo human skin model, translating this mechanism to a potential tissue-relevant signal in the human epidermis. In conclusion, we describe hypo-osmotic stress as an inducer of IL-33 expression, linking cellular stress to nuclear accumulation of a strong proinflammatory cytokine.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Interleucina-33/genética , Queratinócitos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-33/biossíntese , Queratinócitos/patologia , Microscopia de Contraste de Fase , Pressão Osmótica , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA