Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(4): 133, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897421

RESUMO

Health care-associated infections (HAIs) contribute to a significant rate of morbidity, mortality, and financial burden on health systems. These infections are caused by multidrug-resistant bacteria that produce biofilm as the main virulence factor. This study aimed to evaluate the effect of the copper-based metallic compounds [Cu(phen)(pz)NO2]Cl (I), [Cu(bpy)(pz)(NO2)]Cl (II), and [Cu(phen)(INA)NO2]Cl (III), where phen = phenanthroline, bpy = bipyridine, pz = pyrazinamide, and INA = isonicotinic acid, against planktonic cells and biofilms formation of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli. The susceptibility of the microorganisms was evaluated by minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and time-kill curve assay on planktonic cells. The biofilm formation was evaluated by biomass quantification through staining with crystal violet (CV), colony-forming units (CFUs) quantification, and biofilm metabolic activity determination by XTT assay. The compounds showed bacteriostatic and bactericidal activity on all microorganisms analyzed. Regarding the antibiofilm activity, all metallic compounds were able to reduce significantly the biofilm biomass, colony-forming units, and the metabolic activity of remaining cells, varying the efficient concentration according to the strain analyzed. Interestingly, compounds (I), (II) and (III) did not exhibit DNA degradation activity even with up to 100 µM of these metal complexes. On the other hand, complexes (I) and (III) showed a remarkable capacity to cleave DNA upon addition of glutathione, a reducing agent (CuII/CuI) that leads to reactive oxygen species (ROS) formation. The results presented in this study showed promising antimicrobial and antibiofilm effects.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Cobre/farmacologia , Dióxido de Nitrogênio/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Biofilmes , Atenção à Saúde , Testes de Sensibilidade Microbiana
2.
J Biol Inorg Chem ; 25(3): 419-428, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172453

RESUMO

The cis-[Ru(bpy)2(Met)](PF6)2 complex, where Met = L-methionine and bpy = 2,2'-bipyridine, was prepared and fully characterized. This complex was subjected to blue and green light photolysis (453 and 505 nm, respectively) in aqueous solution, leading to the release of methionine and formation of the cis-[Ru(bpy)2(H2O)2]2+ ion. This latter photoproduct was shown to subsequently interact with DNA, while DNA photocleavage was noticed. In agreement with these reactivities, this compound exhibited an exciting antibacterial action, particularly against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, which was enhanced upon blue light irradiation. Altogether, these results showed that our strategy was successful in producing light-triggered DNA-binding agents with pharmacological potential and a likely blocking reagent for efficient peptide chemistry formation.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Metionina/farmacologia , Rutênio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/efeitos dos fármacos , Clivagem do DNA , Luz , Masculino , Metionina/química , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Rutênio/química , Salmão , Espermatozoides/química
3.
J Inorg Biochem ; 173: 144-151, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28550768

RESUMO

The ruthenium(II) compounds cis-[Ru(bpy)2(4-bzpy)(CO)](PF6)2 (I) and cis-[Ru(bpy)2(4-bzpy)(Cl)](PF6) (II) (4-bzpy=4-benzoylpyridine, bpy=2,2'-bipyridine) were synthesized and characterized by spectroscopic and electrochemical techniques. The crystal structure of II was determined by X-ray diffraction. The photochemical behavior of I in aqueous solution shows that irradiation with ultraviolet light (365nm) releases both CO and 4-bzpy leading to the formation of the cis-[Ru(bpy)2(H2O)2]2+ ion as identified by NMR and electronic spectroscopy. Carbon monoxide release was confirmed with the myoglobin method and by gas chromatographic analysis of the headspace. CO release was not observed when aqueous I was irradiated with blue light (453nm). Changes in the electronic and 1H NMR spectra indicate that I undergoes photoaquation of 4-bzpy to form cis-[Ru(bpy)2(CO)(H2O)]2+. Blue light irradiation of aqueous II released the coordinated 4-bzpy to give the cis-[Ru(bpy)2(H2O)(Cl)]2+ ion. When the latter reaction was carried out in the presence of the nucleobase guanine, Ru-guanine adducts were formed, indicating that the metal containing photoproduct may also participate in biologically relevant reactions. The photochemical behavior of I indicates that it can release either CO or 4-bzpy depending on the wavelength chosen, a feature that may have therapeutic application.


Assuntos
2,2'-Dipiridil/síntese química , Luz , Fotoquímica/métodos , Piridinas/química , Compostos de Rutênio/química , Monóxido de Carbono/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Difração de Raios X
4.
J Inorg Biochem ; 105(5): 624-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21443852

RESUMO

Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)(2)L(NO)](n+) type, where L = SO(3)(2-) and imidazole and bpy = 2,2'-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)(2)L(NOSR)](n+) and [Ru(bpy)(2)L(NOSR)(2)] (SR = thiol) leading to the final products [Ru(bpy)(2)L(H(2)O)](n+) and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k(2)(SR(-))=(2.20±0.12)×10(9) M(-1) s(-1) and k(2(RSH))=(154±2) M(-1) s(-1) for L = SO(3)(2-) and k(2)(SR(-))=(1.30±0.23)×10(9) M(-1) s(-1) and k(2)(RSH)=(0.84±0.02) M(-1) s(-1) for L = imidazole; while for glutathione they were k(2)(SR(-))=(6.70±0.32)×10(8) M(-1) s(-1) and k(2)(RSH)=11.8±0.3 M(-1) s(-1) for L = SO(3)(2-) and k(2)(SR(-))=(2.50±0.36)×10(8) M(-1) s(-1) and k(2)(RSH)=0.32±0.01 M(-1) s(-1) for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N(2)O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.


Assuntos
2,2'-Dipiridil/química , Óxido Nítrico/química , Rutênio/química , Compostos de Sulfidrila/química , 2,2'-Dipiridil/metabolismo , Cisteína/química , Cisteína/metabolismo , Glutationa/química , Glutationa/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Cinética , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA