Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104891, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286038

RESUMO

Fibrils of the microtubule-associated protein tau are intimately linked to the pathology of Alzheimer's disease (AD) and related neurodegenerative disorders. A current paradigm for pathology spreading in the human brain is that short tau fibrils transfer between neurons and then recruit naive tau monomers onto their tips, perpetuating the fibrillar conformation with high fidelity and speed. Although it is known that the propagation could be modulated in a cell-specific manner and thereby contribute to phenotypic diversity, there is still limited understanding of how select molecules are involved in this process. MAP2 is a neuronal protein that shares significant sequence homology with the repeat-bearing amyloid core region of tau. There is discrepancy about MAP2's involvement in pathology and its relationship with tau fibrillization. Here, we employed the entire repeat regions of 3R and 4R MAP2, to investigate their modulatory role in tau fibrillization. We find that both proteins block the spontaneous and seeded aggregation of 4R tau, with 4R MAP2 being slightly more potent. The inhibition of tau seeding is observed in vitro, in HEK293 cells, and in AD brain extracts, underscoring its broader scope. MAP2 monomers specifically bind to the end of tau fibrils, preventing recruitment of further tau and MAP2 monomers onto the fibril tip. The findings uncover a new function for MAP2 as a tau fibril cap that could play a significant role in modulating tau propagation in disease and may hold promise as a potential intrinsic protein inhibitor.


Assuntos
Doença de Alzheimer , Proteínas Associadas aos Microtúbulos , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Citoesqueleto/metabolismo , Células HEK293 , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(13): 6111-6119, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850548

RESUMO

Microrchidia 3 (MORC3) is a human protein linked to autoimmune disorders, Down syndrome, and cancer. It is a member of a newly identified family of human ATPases with an uncharacterized mechanism of action. Here, we elucidate the molecular basis for inhibition and activation of MORC3. The crystal structure of the MORC3 region encompassing the ATPase and CW domains in complex with a nonhydrolyzable ATP analog demonstrates that the two domains are directly coupled. The extensive ATPase:CW interface stabilizes the protein fold but inhibits the catalytic activity of MORC3. Enzymatic, NMR, mutational, and biochemical analyses show that in the autoinhibited, off state, the CW domain sterically impedes binding of the ATPase domain to DNA, which in turn is required for the catalytic activity. MORC3 autoinhibition is released by disrupting the intramolecular ATPase:CW coupling through the competitive interaction of CW with histone H3 tail or by mutating the interfacial residues. Binding of CW to H3 leads to a marked rearrangement in the ATPase-CW cassette, which frees the DNA-binding site in active MORC3 (on state). We show that ATP-induced dimerization of the ATPase domain is strictly required for the catalytic activity and that the dimeric form of ATPase-CW might cooperatively bind to dsDNA. Together, our findings uncovered a mechanism underlying the fine-tuned regulation of the catalytic domain of MORC3 by the epigenetic reader, CW.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Catálise , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Ativação Enzimática , Polarização de Fluorescência , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética
3.
Phys Chem Chem Phys ; 21(4): 1863-1871, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30632561

RESUMO

Intrinsically disordered proteins (IDPs) are crucial to many cellular processes and have been linked to neurodegenerative diseases. Single molecules of tau, an IDP associated with Alzheimer's disease, are trapped in solution using a microfluidic device, and a time-resolved fluorescence anisotropy decay is recorded for each molecule. Multiple rotational components are resolved and a novel k-means algorithm is used to sort the molecules into two families of conformations. Differences in rotational dynamics suggest a change in the rigidity and steric hindrance surrounding a sequence (306VQIVYK311) which is central to paired helical filament formation. This single-molecule approach can be applied to other IDPs to resolve heterogeneous populations and underlying differences in conformational dynamics.


Assuntos
Proteínas tau/química , Polarização de Fluorescência , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Imagem Individual de Molécula
4.
J Biol Chem ; 291(23): 12271-81, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27080260

RESUMO

Tau fibrils are pathological aggregates that can transfer between neurons and then recruit soluble Tau monomers by template-assisted conversion. The propagation of different fibril polymorphs is thought to be a contributing factor to phenotypic diversity in Alzheimer disease and other Tauopathies. We found that a homogeneous population of Tau fibrils composed of the truncated version K18 (residues 244-372) gradually converted to a new set of fibril conformers when subjected to multiple cycles of seeding and growth. Using double electron-electron resonance (DEER) spectroscopy, we observed that the distances between spin labels at positions 311 and 328 in the fibril core progressively decreased. The findings were corroborated by changes in turbidity, morphology, and protease sensitivity. Fibrils that were initially formed under stirring conditions exhibited an increased fragility compared with fibrils formed quiescently after multiple cycles of seeding. The quiescently formed fibrils were marked by accelerated growth. The difference in fragility and growth between the different conformers explains how the change in incubation condition could lead to the amplification of a minor subpopulation of fibrils. Under quiescent conditions where fibril breakage is minimal, faster growing fibrils have a selective advantage. The findings are of general importance as they suggest that changes in selective pressures during fibril propagation in the human brain could result in the emergence of new fibril conformers with varied clinicopathological consequences.


Assuntos
Mutação , Conformação Proteica , Proteínas tau/química , Proteínas tau/genética , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/ultraestrutura
5.
Angew Chem Int Ed Engl ; 56(49): 15584-15588, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29063723

RESUMO

Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution-phase structural studies. We employed an anti-Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we recorded the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is conspicuously bimodal while those obtained by trapping a globular protein or individual fluorophores are not. Time-resolved fluorescence anisotropy measurements were used to provide an explanation of the bimodal distribution as originating from a shift in the compaction of the two different families of conformations.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas tau/química , Polarização de Fluorescência , Conformação Proteica , Soluções
6.
Biochemistry ; 54(30): 4731-40, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26177386

RESUMO

Tau fibrils are the main proteinacious components of neurofibrillary lesions in Alzheimer disease. Although RNA molecules are sequestered into these lesions, their relationship to Tau fibrils is only poorly understood. Such understanding, however, is important, as short fibrils can transfer between neurons and nonproteinacious factors including RNA could play a defining role in modulating the latter process. Here, we used sedimentation assays combined with electron paramagnetic resonance (EPR), fluorescence, and absorbance spectroscopy to determine the effects of RNA on Tau fibril structure and growth. We observe that, in the presence of RNA, three-repeat (3R) and four-repeat (4R) Tau form fibrils with parallel, in-register arrangement of ß-strands and exhibit an asymmetric seeding barrier in which 4R Tau grows onto 3R Tau seeds but not vice versa. These structural features are similar to those previously observed for heparin-induced fibrils, indicating that basic conformational properties are conserved, despite their being molecular differences of the nucleating agents. Furthermore, RNA sustains template-assisted growth and binds to the fibril surface and can be exchanged by heparin. These findings suggest that, in addition to mediating fibrillization, cofactors decorating the surface of Tau fibrils may modulate biological interactions and thereby influence the spreading of Tau pathology in the human brain.


Assuntos
Heparina/química , Complexos Multiproteicos/química , RNA/química , Proteínas tau/química , Doença de Alzheimer/metabolismo , Heparina/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , RNA/metabolismo , Proteínas tau/metabolismo
7.
Nat Commun ; 10(1): 2314, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127101

RESUMO

Histone methyltransferase MLL4 is centrally involved in transcriptional regulation and is often mutated in human diseases, including cancer and developmental disorders. MLL4 contains a catalytic SET domain that mono-methylates histone H3K4 and seven PHD fingers of unclear function. Here, we identify the PHD6 finger of MLL4 (MLL4-PHD6) as a selective reader of the epigenetic modification H4K16ac. The solution NMR structure of MLL4-PHD6 in complex with a H4K16ac peptide along with binding and mutational analyses reveal unique mechanistic features underlying recognition of H4K16ac. Genomic studies show that one third of MLL4 chromatin binding sites overlap with H4K16ac-enriched regions in vivo and that MLL4 occupancy in a set of genomic targets depends on the acetyltransferase activity of MOF, a H4K16ac-specific acetyltransferase. The recognition of H4K16ac is conserved in the PHD7 finger of paralogous MLL3. Together, our findings reveal a previously uncharacterized acetyllysine reader and suggest that selective targeting of H4K16ac by MLL4 provides a direct functional link between MLL4, MOF and H4K16 acetylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Dedos de Zinco PHD/fisiologia , Acetilação , Animais , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Técnicas de Inativação de Genes , Células HEK293 , Histona Acetiltransferases/genética , Histona-Lisina N-Metiltransferase/química , Histonas/química , Humanos , Camundongos Transgênicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
8.
Nat Commun ; 9(1): 4373, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349045

RESUMO

Autophagic receptor p62 is a critical mediator of cell detoxification, stress response, and metabolic programs and is commonly deregulated in human diseases. The diverse functions of p62 arise from its ability to interact with a large set of ligands, such as arginylated (Nt-R) substrates. Here, we describe the structural mechanism for selective recognition of Nt-R by the ZZ domain of p62 (p62ZZ). We show that binding of p62ZZ to Nt-R substrates stimulates p62 aggregation and macroautophagy and is required for autophagic targeting of p62. p62 is essential for mTORC1 activation in response to arginine, but it is not a direct sensor of free arginine in the mTORC1 pathway. We identified a regulatory linker (RL) region in p62 that binds p62ZZ in vitro and may modulate p62 function. Our findings shed new light on the mechanistic and functional significance of the major cytosolic adaptor protein p62 in two fundamental signaling pathways.


Assuntos
Autofagia/fisiologia , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Linhagem Celular , Cristalografia por Raios X , Citometria de Fluxo , Células HEK293 , Humanos , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ligação Proteica , Proteína Sequestossoma-1/genética , Transdução de Sinais , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA