Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(32): 14293-14305, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093591

RESUMO

Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Madeira , Madeira/química , Alaska , Radicais Livres , Material Particulado , Monitoramento Ambiental , Aerossóis , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Environ Sci Technol ; 57(51): 21801-21814, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078756

RESUMO

Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 µg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 µm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 µm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 µm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Humanos , Microcistinas/análise , Toxinas de Cianobactérias , Lagos/análise , Lagos/microbiologia , Aerossóis , Água , Atmosfera/análise
3.
Sci Adv ; 10(36): eado4373, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231233

RESUMO

The prevailing view for aqueous secondary aerosol formation is that it occurs in clouds and fogs, owing to the large liquid water content compared to minute levels in fine particles. Our research indicates that this view may need reevaluation due to enhancements in aqueous reactions in highly concentrated small particles. Here, we show that low temperature can play a role through a unique effect on particle pH that can substantially modulate secondary aerosol formation. Marked increases in hydroxymethanesulfonate observed under extreme cold in Fairbanks, Alaska, demonstrate the effect. These findings provide insight on aqueous chemistry in fine particles under cold conditions expanding possible regions of secondary aerosol formation that are pH dependent beyond conditions of high liquid water.

4.
Talanta ; 200: 415-423, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31036204

RESUMO

Five different zwitterionic sorbent coatings based on polymeric ionic liquids (PILs) were developed by the on fiber UV co-polymerization of the zwitterionic monomers 1-vinyl-3-(alkylsulfonate)imidazolium or 1-vinyl-3-(alkylcarboxylate)imidazolium and different dicationic ionic liquid (IL) crosslinkers. The developed sorbent coatings were applied in headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry for the determination of short chain free fatty acids in wine. The sorbent coatings were found to extract these analytes via a non-competitive extraction mechanism. The methodology was optimized for the two best zwitterionic PIL coatings and compared to the commercially-available carboxen/polydimethylsiloxane (CAR/PDMS) and polyacrylate (PA) fibers. The sorbent coating based on the 1-vinyl-3-(propanesulfonate)imidazolium IL (Fiber 1) was more sensitive than PA while providing similar limits of detection to CAR/PDMS for the determination of analytes in a diluted synthetic wine sample. At the same time, Fiber 1 required lower extraction times (only 20 min versus 60 min for CAR/PDMS and 40 min for PA), exhibited higher reproducibility (with relative standard deviation lower than 8.9% for a spiked level of 7 µM) and was more tolerant to ethanol present within the sample. The zwitterionic PILs were also applied for the analysis of red wine, and the results were in agreement with those obtained for CAR/PDMS. The analytes were detected and quantified in the concentration range from 0.18 ±â€¯0.03 mg L-1 to 4.8 ±â€¯0.9 mg L-1, depending on the analyte and fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA