Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074916

RESUMO

Pogona vitticeps has female heterogamety (ZZ/ZW), but the master sex-determining gene is unknown, as it is for all reptiles. We show that nr5a1 (Nuclear Receptor Subfamily 5 Group A Member 1), a gene that is essential in mammalian sex determination, has alleles on the Z and W chromosomes (Z-nr5a1 and W-nr5a1), which are both expressed and can recombine. Three transcript isoforms of Z-nr5a1 were detected in gonads of adult ZZ males, two of which encode a functional protein. However, ZW females produced 16 isoforms, most of which contained premature stop codons. The array of transcripts produced by the W-borne allele (W-nr5a1) is likely to produce truncated polypeptides that contain a structurally normal DNA-binding domain and could act as a competitive inhibitor to the full-length intact protein. We hypothesize that an altered configuration of the W chromosome affects the conformation of the primary transcript generating inhibitory W-borne isoforms that suppress testis determination. Under this hypothesis, the genetic sex determination (GSD) system of P. vitticeps is a W-borne dominant female-determining gene that may be controlled epigenetically.


Assuntos
Alelos , Cromossomos/genética , Splicing de RNA , Processos de Determinação Sexual , Fator Esteroidogênico 1/genética , Sequência de Aminoácidos , Animais , Cromossomos/química , Feminino , Dosagem de Genes , Lagartos , Masculino , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Répteis , Cromossomos Sexuais , Fatores Sexuais , Fator Esteroidogênico 1/química , Relação Estrutura-Atividade
2.
PLoS Genet ; 17(4): e1009465, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857129

RESUMO

How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.


Assuntos
Lagartos/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Transcriptoma/genética , Animais , Feminino , Lagartos/crescimento & desenvolvimento , Masculino , Análise para Determinação do Sexo/métodos , Temperatura , Transcrição Gênica/genética
3.
BMC Genomics ; 24(1): 243, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147622

RESUMO

BACKGROUND: Sex determination is the process whereby the bipotential embryonic gonads become committed to differentiate into testes or ovaries. In genetic sex determination (GSD), the sex determining trigger is encoded by a gene on the sex chromosomes, which activates a network of downstream genes; in mammals these include SOX9, AMH and DMRT1 in the male pathway, and FOXL2 in the female pathway. Although mammalian and avian GSD systems have been well studied, few data are available for reptilian GSD systems. RESULTS: We conducted an unbiased transcriptome-wide analysis of gonad development throughout differentiation in central bearded dragon (Pogona vitticeps) embryos with GSD. We found that sex differentiation of transcriptomic profiles occurs at a very early stage, before the gonad consolidates as a body distinct from the gonad-kidney complex. The male pathway genes dmrt1 and amh and the female pathway gene foxl2 play a key role in early sex differentiation in P. vitticeps, but the central player of the mammalian male trajectory, sox9, is not differentially expressed in P. vitticeps at the bipotential stage. The most striking difference from GSD systems of other amniotes is the high expression of the male pathway genes amh and sox9 in female gonads during development. We propose that a default male trajectory progresses if not repressed by a W-linked dominant gene that tips the balance of gene expression towards the female trajectory. Further, weighted gene expression correlation network analysis revealed novel candidates for male and female sex differentiation. CONCLUSION: Our data reveal that interpretation of putative mechanisms of GSD in reptiles cannot solely depend on lessons drawn from mammals.


Assuntos
Répteis , Processos de Determinação Sexual , Diferenciação Sexual , Animais , Feminino , Masculino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Répteis/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Fatores de Transcrição SOX9/genética
4.
BMC Genomics ; 23(1): 322, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459109

RESUMO

BACKGROUND: In some vertebrate species, gene-environment interactions can determine sex, driving bipotential gonads to differentiate into either ovaries or testes. In the central bearded dragon (Pogona vitticeps), the genetic influence of sex chromosomes (ZZ/ZW) can be overridden by high incubation temperatures, causing ZZ male to female sex reversal. Previous research showed ovotestes, a rare gonadal phenotype with traits of both sexes, develop during sex reversal, leading to the hypothesis that sex reversal relies on high temperature feminisation to outcompete the male genetic cue. To test this, we conducted temperature switching experiments at key developmental stages, and analysed the effect on gonadal phenotypes using histology and transcriptomics. RESULTS: We found sexual fate is more strongly influenced by the ZZ genotype than temperature. Any exposure to low temperatures (28 °C) caused testes differentiation, whereas sex reversal required longer exposure to high temperatures. We revealed ovotestes exist along a spectrum of femaleness to male-ness at the transcriptional level. We found inter-individual variation in gene expression changes following temperature switches, suggesting both genetic sensitivity to, and the timing and duration of the temperature cue influences sex reversal. CONCLUSIONS: These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.


Assuntos
Lagartos , Animais , Feminino , Gônadas , Lagartos/genética , Masculino , Cromossomos Sexuais , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Temperatura
5.
Biol Reprod ; 106(1): 132-144, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34849582

RESUMO

The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, have been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodeling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterized tissue specific expression and cellular localization patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.


Assuntos
Epigênese Genética/fisiologia , Lagartos/fisiologia , Processos de Determinação Sexual/fisiologia , Temperatura , Animais , Montagem e Desmontagem da Cromatina/genética , Feminino , Gônadas/química , Histonas/análise , Imuno-Histoquímica/métodos , Imuno-Histoquímica/veterinária , Histona Desmetilases com o Domínio Jumonji/análise , Lagartos/genética , Masculino , Metilação , Proteínas de Ligação a RNA/análise , Processos de Determinação Sexual/genética
6.
Proc Biol Sci ; 288(1943): 20202819, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33467998

RESUMO

Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene-environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.


Assuntos
Lagartos , Processos de Determinação Sexual , Animais , Feminino , Lagartos/genética , Análise para Determinação do Sexo , Processos de Determinação Sexual/genética , Razão de Masculinidade , Temperatura
7.
Heredity (Edinb) ; 126(5): 805-816, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526811

RESUMO

The view that has genotypic sex determination and environmental sex determination as mutually exclusive states in fishes and reptiles has been contradicted by the discovery that chromosomal sex and environmental influences can co-exist within the same species, hinting at a continuum of intermediate states. Systems where genes and the environment interact to determine sex present the opportunity for sex reversal to occur, where the phenotypic sex is the opposite of that predicted by their sex chromosome complement. The skink Bassiana duperreyi has XX/XY sex chromosomes with sex reversal of the XX genotype to a male phenotype, in laboratory experiments, and in field nests, in response to exposure to cold incubation temperatures. Here we studied the frequency of sex reversal in adult populations of B. duperreyi in response to climatic variation, using elevation as a surrogate for environmental temperatures. We demonstrate sex reversal in the wild for the first time in adults of a reptile species with XX/XY sex determination. The highest frequency of sex reversal occurred at the highest coolest elevation location, Mt Ginini (18.46%) and decreased in frequency to zero with decreasing elevation. We model the impact of this under Fisher's frequency-dependent selection to show that, at the highest elevations, populations risk the loss of the Y chromosome and a transition to temperature-dependent sex determination. This study contributes to our understanding of the risks of extinction from climate change in species subject to sex reversal by temperature, and will provide focus for future research to test on-the-ground management strategies to mitigate the effects of climate in local populations.


Assuntos
Lagartos , Processos de Determinação Sexual , Animais , Genótipo , Lagartos/genética , Masculino , Cromossomos Sexuais/genética , Cromossomo Y/genética
8.
Nature ; 523(7558): 79-82, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135451

RESUMO

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.


Assuntos
Adaptação Fisiológica , Processos de Determinação Sexual/fisiologia , Temperatura , Animais , Austrália , Feminino , Masculino , Dados de Sequência Molecular , Répteis , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Razão de Masculinidade
9.
J Evol Biol ; 33(3): 270-281, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951035

RESUMO

Sex reversal at high temperatures during embryonic development (e.g., ZZ females) provides the opportunity for new genotypic crosses (e.g., ZZ male × ZZ female). This raises the alarming possibility that climatic warming could lead to the loss of an entire chromosome-one member of the sex chromosome pair (the Y or W)-and the transition of populations to environmental sex determination (ESD). Here we examine the evolutionary dynamics of sex-determining systems exposed to climatic warming using theoretical models. We found that the loss of sex chromosomes is not an inevitable consequence of sex reversal. A large frequency of ZZ sex reversal (50% reversal from male to female) typically divides the outcome between loss of the ZW genotype and the stable persistence of ZZ males, ZW females and ZZ females. The amount of warming associated with sex chromosome loss depended on several features of wild populations-environmental fluctuation, immigration, heritable variation in temperature sensitivity and differential fecundity of sex-reversed individuals. Chromosome loss was partially or completely buffered when sex-reversed individuals suffered a reproductive fitness cost, when immigration occurred or when heritable variation for temperature sensitivity existed. Thus, under certain circumstances, sex chromosomes may persist cryptically in systems where the environment is the predominant influence on sex.


Assuntos
Mudança Climática , Processos de Determinação Sexual/fisiologia , Animais , Deleção Cromossômica , Meio Ambiente , Feminino , Genótipo , Temperatura Alta , Masculino , Cromossomos Sexuais/genética
10.
BMC Genomics ; 17: 447, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286959

RESUMO

BACKGROUND: Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. RESULTS: By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. CONCLUSIONS: Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.


Assuntos
Cromossomos , Evolução Molecular , Genoma , Genômica , Lagartos/genética , Animais , Galinhas/genética , Mapeamento Cromossômico , Feminino , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Cromossomos Sexuais , Processos de Determinação Sexual/genética
11.
PLoS One ; 19(1): e0296491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165968

RESUMO

Formalin fixation of natural history specimens and histopathological material has historically been viewed as an impediment to successful genomic analysis. However, the development of extraction methods specifically tailored to contend with heavily crosslinked archival tissues, re-contextualises millions of previously overlooked specimens as viable molecular assets. Here, we present an easy-to-follow protocol for screening archival wet specimens for molecular viability and subsequent genomic DNA extraction suitable for sequencing. The protocol begins with non-destructive assessment of specimen degradation and preservation media conditions to allow both museum curators and researchers to select specimens most likely to yield an acceptable proportion (20-60%) of mappable endogenous DNA during short-read DNA sequencing. The extraction protocol uses hot alkaline lysis in buffer (0.1M NaOH, 1% SDS, pH 13) to simultaneously lyse and de-crosslink the tissue. To maximise DNA recovery, phenol:chloroform extraction is coupled with a small-fragment optimised SPRI bead clean up. Applied to well-preserved archival tissues, the protocol can yield 1-2 µg DNA per 50 mg of tissue with mean fragment sizes typically ranging from 50-150 bp, which is suitable to recover genomic DNA sufficient to reconstruct complete mitochondrial genomes and achieve up to 25X nuclear genome coverage. We provide guidance for read mapping to a reference genome and discuss the limitations of relying on small fragments for SNP genotyping and de novo genome assembly. This protocol opens the door to broader-scale genetic and phylogenetic analysis of historical specimens, contributing to a deeper understanding of evolutionary trends and adaptation in response to changing environments.


Assuntos
Formaldeído , Genoma Mitocondrial , Formaldeído/química , Filogenia , DNA/genética , DNA/química , Análise de Sequência de DNA/métodos
12.
BMC Genomics ; 14: 899, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24344927

RESUMO

BACKGROUND: Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. RESULTS: We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. CONCLUSION: Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences.


Assuntos
Lagartos/genética , Mapeamento Físico do Cromossomo , Cromossomos Sexuais/genética , Trombospondinas/genética , Animais , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Feminino , Biblioteca Gênica , Fases de Leitura Aberta , Ovário , Retroelementos , Análise de Sequência de DNA , Análise para Determinação do Sexo
13.
Mol Ecol ; 21(7): 1727-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22335253

RESUMO

Natal dispersal is an important life history trait driving variation in individual fitness, and therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. This novel approach not only identifies movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark-recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group, while male genetic structure expands for 750 m from their social group. Although the genetic network approach we have used is an excellent tool for visualizing the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data.


Assuntos
Genética Populacional/métodos , Passeriformes/genética , Animais , Feminino , Masculino , Repetições de Microssatélites , Modelos Genéticos , New South Wales , Dinâmica Populacional , Análise de Sequência de DNA , Comportamento Social
14.
Sci Rep ; 12(1): 6320, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428801

RESUMO

Defences of hosts against brood parasitic cuckoos include detection and ejection of cuckoo eggs from the nest. Ejection behaviour often involves puncturing the cuckoo egg, which is predicted to drive the evolution of thicker eggshells in cuckoos that parasitise such hosts. Here we test this prediction in four Australian cuckoo species and their hosts, using Hall-effect magnetic-inference to directly estimate eggshell thickness in parasitised clutches. In Australia, hosts that build cup-shaped nests are generally adept at ejecting cuckoo eggs, whereas hosts that build dome-shaped nests mostly accept foreign eggs. We analysed two datasets: a small sample of hosts with known egg ejection rates and a broader sample of hosts where egg ejection behaviour was inferred based on nest type (dome or cup). Contrary to predictions, cuckoos that exploit dome-nesting hosts (acceptor hosts) had significantly thicker eggshells relative to their hosts than cuckoos that exploit cup-nesting hosts (ejector hosts). No difference in eggshell thicknesses was observed in the smaller sample of hosts with known egg ejection rates, probably due to lack of power. Overall cuckoo eggshell thickness did not deviate from the expected avian relationship between eggshell thickness and egg length estimated from 74 bird species. Our results do not support the hypothesis that thicker eggshells have evolved in response to host ejection behaviour in Australian cuckoos, but are consistent with the hypothesis that thicker eggshells have evolved to reduce the risk of breakage when eggs are dropped into dome nests.


Assuntos
Casca de Ovo , Parasitos , Animais , Austrália , Aves/fisiologia , Interações Hospedeiro-Parasita , Comportamento de Nidação/fisiologia , Óvulo
15.
Ecol Evol ; 12(3): e8627, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342559

RESUMO

Much attention is paid in conservation planning to the concept of a species, to ensure comparability across studies and regions when classifying taxa against criteria of endangerment and setting priorities for action. However, various jurisdictions now allow taxonomic ranks below the level of species and nontaxonomic intraspecific divisions to be factored into conservation planning-subspecies, key populations, evolutionarily significant units, or designatable units. Understanding patterns of genetic diversity and its distribution across the landscape is a key component in the identification of species boundaries and determination of substantial geographic structure within species. A total of 12,532 reliable polymorphic SNP loci were generated from 63 populations (286 individuals) covering the distribution of the Australian eastern three-lined skink, Bassiana duperreyi, to assess genetic population structure in the form of diagnosable lineages and their distribution across the landscape, with particular reference to the recent catastrophic bushfires of eastern Australia. Five well-supported diagnosable operational taxonomic units (OTUs) existed within B. duperreyi. Low levels of divergence of B. duperreyi between mainland Australia and Tasmania (no fixed allelic differences) support the notion of episodic exchange of alleles across Bass Strait (ca 60 m, 25 Kya) during periods of low sea level during the Upper Pleistocene rather than the much longer period of isolation (1.7 My) indicated by earlier studies using mitochondrial sequence variation. Our study provides foundational work for the detailed taxonomic re-evaluation of this species complex and the need for biodiversity assessment to include an examination of cryptic species and/or cryptic diversity below the level of species. Such information on lineage diversity within species and its distribution in the context of disturbance at a regional scale can be factored into conservation planning regardless of whether a decision is made to formally diagnose new species taxonomically and nomenclaturally.

16.
Mol Ecol Resour ; 22(6): 2130-2147, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34549888

RESUMO

Museum specimens represent an unparalleled record of historical genomic data. However, the widespread practice of formalin preservation has thus far impeded genomic analysis of a large proportion of specimens. Limited DNA sequencing from formalin-preserved specimens has yielded low genomic coverage with unpredictable success. We set out to refine sample processing methods and to identify specimen characteristics predictive of sequencing success. With a set of taxonomically diverse specimens collected between 1962 and 2006 and ranging in preservation quality, we compared the efficacy of several end-to-end whole genome sequencing workflows alongside a k-mer-based trimming-free read alignment approach to maximize mapping of endogenous sequence. We recovered complete mitochondrial genomes and up to 3× nuclear genome coverage from formalin-preserved tissues. Hot alkaline lysis coupled with phenol-chloroform extraction out-performed proteinase K digestion in recovering DNA, while library preparation method had little impact on sequencing success. The strongest predictor of DNA yield was overall specimen condition, which additively interacts with preservation conditions to accelerate DNA degradation. Here, we demonstrate a significant advance in capability beyond limited recovery of a small number of loci via PCR or target-capture sequencing. To facilitate strategic selection of suitable specimens for genomic sequencing, we present a decision-making framework that utilizes independent and nondestructive assessment criteria. Sequencing of formalin-preserved specimens will contribute to a greater understanding of temporal trends in genetic adaptation, including those associated with a changing climate. Our work enhances the value of museum collections worldwide by unlocking genomes of specimens that have been disregarded as a valid molecular resource.


Assuntos
Formaldeído , Genoma Mitocondrial , DNA/genética , Preservação Biológica , Análise de Sequência de DNA/métodos
17.
Sci Adv ; 8(16): eabk0275, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442724

RESUMO

Sex determination and differentiation in reptiles are complex. In the model species, Pogona vitticeps, high incubation temperature can cause male to female sex reversal. To elucidate the epigenetic mechanisms of thermolabile sex, we used an unbiased genome-wide assessment of intron retention during sex reversal. The previously implicated chromatin modifiers (jarid2 and kdm6b) were two of three genes to display sex reversal-specific intron retention. In these species, embryonic intron retention resulting in C-terminally truncated jarid2 and kdm6b isoforms consistently occurs at low temperatures. High-temperature sex reversal is uniquely characterized by a high prevalence of N-terminally truncated isoforms of jarid2 and kdm6b, which are not present at low temperatures, or in two other reptiles with temperature-dependent sex determination. This work verifies that chromatin-modifying genes are involved in highly conserved temperature responses and can also be transcribed into isoforms with new sex-determining roles.

18.
Mol Ecol ; 20(15): 3156-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21736655

RESUMO

Mutual information (I) provides a robust measure of genetic differentiation for the purposes of estimating dispersal between populations. At present, however, there is little predictive theory for I. The growing importance in population biology of analyses of single-nucleotide and other single-feature polymorphisms (SFPs) is a potent reason for developing an analytic theory for I with respect to a single locus. This study represents a first step towards such a theory. We present theoretical predictions of I between two populations with respect to a single haploid biallelic locus. Dynamical and steady-state forecasts of I are derived from a Wright-Fisher model with symmetrical mutation between alleles and symmetrical dispersal between populations. Analytical predictions of a simple Taylor approximation to I are in good agreement with numerical simulations of I and with data on I from SFP analyses of dispersal experiments on Drosophila fly populations. The theory presented here also provides a basis for the future inclusion of selection effects and extension to multiallelic loci.


Assuntos
Genética Populacional/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Drosophila melanogaster/genética , Mutação
19.
J Exp Zool A Ecol Integr Physiol ; 335(3): 301-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411403

RESUMO

Environmental sex determination (ESD) is common among ectothermic vertebrates. The stress axis and production of stress hormones (corticosteroids) regulates ESD in fish, but evidence of a similar influence in reptiles is sparse and conflicting. The central bearded dragon (Pogona vitticeps) has a system of sex determination involving the interplay between sex chromosomes (ZZ/ZW female heterogamety) and the thermal environment. High egg incubation temperatures induce sex reversal of the ZZ genotype, feminizing chromosomally male individuals. Here we show that corticosterone elevation is not associated with sex reversal in the central bearded dragon, either during embryonic development or adulthood. We also demonstrate experimentally that sex determination is not affected by corticosterone injection into the yolk. This strongly suggests that stress axis upregulation by high temperature during incubation does not cause sex reversal in P. vitticeps. Our work is in general agreement with other research in reptiles, which suggests that the stress axis does not mediate sex in reptiles with ESD. Alternative biological systems may be responsible for capturing environmental conditions during reptile development, such as cellular calcium and redox regulation or the action of temperature-sensitive splicing factors.


Assuntos
Corticosterona/metabolismo , Lagartos/metabolismo , Processos de Determinação Sexual , Temperatura , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Estresse Fisiológico
20.
Sci Rep ; 11(1): 1605, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452280

RESUMO

Natural history collections are often plagued by missing or inaccurate metadata for collection items, particularly for specimens that are difficult to verify or rare. Avian eggshell in particular can be challenging to identify due to extensive morphological ambiguity among taxa. Species identifications can be improved using DNA extracted from museum eggshell; however, the suitability of current methods for use on small museum eggshell specimens has not been rigorously tested, hindering uptake. In this study, we compare three sampling methodologies to genetically identify 45 data-poor eggshell specimens, including a putatively extinct bird's egg. Using an optimised drilling technique to retrieve eggshell powder, we demonstrate that sufficient DNA for molecular identification can be obtained from even the tiniest eggshells without significant alteration to the specimen's appearance or integrity. This method proved superior to swabbing the external surface or sampling the interior; however, we also show that these methods can be viable alternatives. We then applied our drilling method to confirm that a purported clutch of Paradise Parrot eggs collected 40 years after the species' accepted extinction date were falsely identified, laying to rest a 53-year-old ornithological controversy. Thus, even the smallest museum eggshells can offer new insights into old questions.


Assuntos
Aves/genética , Código de Barras de DNA Taxonômico , Casca de Ovo/metabolismo , Papagaios/genética , Animais , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Museus , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA