Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(23): 6218-6233, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707091

RESUMO

An existing chlorophyll-based model has been updated and re-calibrated using measured data describing Jerlov water types, harvested from the World-wide Ocean Optics Database. This study has provided new chlorophyll concentration data, and used them in conjunction with recently published spectra of absorption and scattering coefficients to create an updated parameter set that describes eight of the 10 Jerlov water types. The updated model is consistent with other data, and it interprets the measured characteristics in terms of underlying properties. Techniques for inter-conversion between inherent and apparent optical properties have been further investigated, and the improved precision has uncovered new challenges that have been addressed using empirical techniques.

2.
Appl Opt ; 61(33): 9951-9961, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606827

RESUMO

Inherent optical properties (IOPs) of typical ocean waters have been derived from a worldwide database of measured parameters. The optical quality of the world's oceans can be described in terms of their Jerlov water type, ranging from the clearest Jerlov I to the most turbid Jerlov 9C. These Jerlov classifications are defined in terms of an apparent optical property known as the downwelling diffuse attenuation coefficient (Kd). There is a need to relate these Jerlov water types to their IOPs, namely their absorption coefficient, a, and scattering coefficient, b. However, robust values of a and b for Jerlov water types have not previously existed. This study used the World-wide Ocean Optics Database to derive a series of experimentally measured a and b values for six Jerlov water types. Using data science techniques to group measurements in time and space, over 13.5 million data points were consolidated into 53 measured values for a and b. Established models were subsequently applied to generate a complete table of absorption and scattering coefficients from 300 to 800 nm for Jerlov IB to Jerlov 5C. The analysis includes the influence of changes in the solar zenith angle and the scattering phase function. These data are recommended for use in applications where IOPs are required to describe Jerlov water types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA