Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Womens Health (Larchmt) ; 29(3): 446-451, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32186966

RESUMO

We review findings and propose a model explaining why women's adaptation to traumatic stress might be different than men's, including the role of cycling hormones and sleep differences in the development of post-traumatic stress and other stress-related disorders. Women are diagnosed with stress-related mental health disorders at a higher frequency than men. Most mental health disorders involve sleep disturbances, which may contribute to these disorders. The mechanisms by which sleep contributes to the development of mental health disorders in women have not been addressed in basic research. Sleep features such as spindle density and rapid eye movement (REM) sleep theta power are important for the role of sleep in emotion and cognition. The effect of hormonal cycles on these and other critical sleep features is only beginning to be understood. We explore what sleep factors could confer resilience to mental health disorders and how they might be altered by hormonal cycles in women. We target a specific system at the nexus of arousal control, stress response, and memory consolidation processes that has not been explored at all in women or across the hormonal cycle in animal studies: the locus coeruleus noradrenergic (LC-NE) system.


Assuntos
Ciclo Menstrual/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Cognição , Emoções , Feminino , Humanos , Locus Cerúleo/fisiologia , Memória/fisiologia
2.
Sleep ; 43(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784755

RESUMO

Sleep impacts diverse physiological and neural processes and is itself affected by the menstrual cycle; however, few studies have examined the effects of the estrous cycle on sleep in rodents. Studies of disease mechanisms in females therefore lack critical information regarding estrous cycle influences on relevant sleep characteristics. We recorded electroencephalographic (EEG) activity from multiple brain regions to assess sleep states as well as sleep traits such as spectral power and interregional spectral coherence in freely cycling females across the estrous cycle and compared with males. Our findings show that the high hormone phase of proestrus decreases the amount of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep and increases the amount of time spent awake compared with other estrous phases and to males. This spontaneous sleep deprivation of proestrus was followed by a sleep rebound in estrus which increased NREM and REM sleep. In proestrus, spectral power increased in the delta (0.5-4 Hz) and the gamma (30-60 Hz) ranges during NREM sleep, and increased in the theta range (5-9 Hz) during REM sleep during both proestrus and estrus. Slow-wave activity (SWA) and cortical sleep spindle density also increased in NREM sleep during proestrus. Finally, interregional NREM and REM spectral coherence increased during proestrus. This work demonstrates that the estrous cycle affects more facets of sleep than previously thought and reveals both sex differences in features of the sleep-wake cycle related to estrous phase that likely impact the myriad physiological processes influenced by sleep.


Assuntos
Caracteres Sexuais , Sono , Animais , Eletroencefalografia , Feminino , Masculino , Ratos , Privação do Sono , Fases do Sono , Sono REM
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA