Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hippocampus ; 33(5): 600-615, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060325

RESUMO

Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single-neuron activity from human participants as they completed a paired-task session consisting of a passive-viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept-related activations in the working memory task, as well as target-location and serial-position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts.


Assuntos
Navegação Espacial , Lobo Temporal , Humanos , Lobo Temporal/fisiologia , Memória de Curto Prazo , Neurônios/fisiologia , Navegação Espacial/fisiologia
2.
Hum Mol Genet ; 25(22): 4920-4938, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28171570

RESUMO

Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington's disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD.


Assuntos
Doença de Huntington/tratamento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Isoleucina/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Fenótipo , Ligação Proteica , Distribuição Aleatória , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos dos fármacos
3.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865334

RESUMO

Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the MTL, we collected and analyzed single-neuron activity from human participants as they completed a paired-task session consisting of a passive-viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept-related activations in the working memory task, as well as target-location and serial-position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human MTL, whereby some individual neurons change the nature of their feature coding between task contexts.

4.
J Alzheimers Dis ; 52(1): 295-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26967220

RESUMO

Phosphodiesterase 5 (PDE5) is a critical component of the cGMP-PKG axis of cellular signaling in neurons, and inhibition of PDE5 has been shown to be therapeutic in a wide range of neurologic conditions in animal models. However, enthusiasm for PDE5 inhibitors in humans is limited by data suggesting that PDE5 may not exist in human neurons. Here, we first show that past attempts to quantify PDE5 mRNA were flawed due to the use of incorrect primers, and that when correct primers are used, PDE5 mRNA is detectable in human brain tissue. We then show that PDE5 protein exists in human brain by western blot and ELISA. Most importantly, we performed immunohistochemistry and demonstrate that PDE5 is present in human neurons. We hope that this work will trigger a renewed interest in the development of PDE5 inhibitors for neurologic disease.


Assuntos
Encéfalo/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Neurônios/enzimologia , Western Blotting , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Doenças do Sistema Nervoso/tratamento farmacológico , Inibidores da Fosfodiesterase 5/uso terapêutico , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA