Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Appl Environ Microbiol ; 88(1): e0162221, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669448

RESUMO

The multi-heme c-type cytochrome OmcS is one of the central components used for extracellular electron transport in the Geobacter sulfurreducens strain DL-1, but its role in other microbes, including other strains of G. sulfurreducens, is currently a matter of debate. Therefore, we investigated the function of OmcS in the G. sulfurreducens strain KN400, which is even more effective in extracellular electron transfer than the DL-1 strain. We found that deleting omcS from strain KN400 did not negatively impact the rate of Fe(III) oxide reduction and that the cells expressed conductive filaments. Replacing the wild-type pilin gene with the aro-5 pilin gene eliminated the OmcS-deficient strain's ability to transport electrons to insoluble electron acceptors and diminished filament conductivity. These results are consistent with the concept that electrically conductive pili are the primary conduit for long-range electron transfer in G. sulfurreducens and closely related species. These findings, coupled with the lack of OmcS homologs in other microbes capable of extracellular electron transfer, suggest that OmcS is not a common critical component for extracellular electron transfer. IMPORTANCE OmcS has been widely studied and noted to be one of the key components for extracellular electron exchange by the Geobacter sulfurreducens strain DL-1. However, the true importance of OmcS warrants further investigation because it is well known that few bacteria, even within the Geobacteraceae family, contain OmcS homologs, and many bacteria that are capable of extracellular electron transfer lack an abundance of any type of outer surface c-type cytochrome. In addition, there is debate about the importance of OmcS filaments in the mechanism of extracellular electron transport to insoluble electron acceptors by G. sulfurreducens. It has been suggested that filaments comprised of OmcS rather than e-pili are the predominant conductive filaments expressed by G. sulfurreducens. However, the results presented here, along with multiple other sources of evidence, indicate that OmcS filaments cannot be the primary, conductive, protein nanowires expressed by G. sulfurreducens.


Assuntos
Elétrons , Geobacter , Citocromos/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Geobacter/genética , Geobacter/metabolismo , Oxirredução
2.
Appl Environ Microbiol ; 87(13): e0073121, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931421

RESUMO

It is known that the physiology of Methanosarcina species can differ significantly, but the ecological impact of these differences is unclear. We recovered two strains of Methanosarcina from two different ecosystems with a similar enrichment and isolation method. Both strains had the same ability to metabolize organic substrates and participate in direct interspecies electron transfer but also had major physiological differences. Strain DH-1, which was isolated from an anaerobic digester, used H2 as an electron donor. Genome analysis indicated that it lacks an Rnf complex and conserves energy from acetate metabolism via intracellular H2 cycling. In contrast, strain DH-2, a subsurface isolate, lacks hydrogenases required for H2 uptake and cycling and has an Rnf complex for energy conservation when growing on acetate. Further analysis of the genomes of previously described isolates, as well as phylogenetic and metagenomic data on uncultured Methanosarcina in anaerobic digesters and diverse soils and sediments, revealed a physiological dichotomy that corresponded with environment of origin. The physiology of type I Methanosarcina revolves around H2 production and consumption. In contrast, type II Methanosarcina species eschew H2 and have genes for an Rnf complex and the multiheme, membrane-bound c-type cytochrome MmcA, shown to be essential for extracellular electron transfer. The distribution of Methanosarcina species in diverse environments suggests that the type I H2-based physiology is well suited for high-energy environments, like anaerobic digesters, whereas type II Rnf/cytochrome-based physiology is an adaptation to the slower, steady-state carbon and electron fluxes common in organic-poor anaerobic soils and sediments. IMPORTANCE Biogenic methane is a significant greenhouse gas, and the conversion of organic wastes to methane is an important bioenergy process. Methanosarcina species play an important role in methane production in many methanogenic soils and sediments as well as anaerobic waste digesters. The studies reported here emphasize that the genus Methanosarcina is composed of two physiologically distinct groups. This is important to recognize when interpreting the role of Methanosarcina in methanogenic environments, especially regarding H2 metabolism. Furthermore, the finding that type I Methanosarcina species predominate in environments with high rates of carbon and electron flux and that type II Methanosarcina species predominate in lower-energy environments suggests that evaluating the relative abundance of type I and type II Methanosarcina may provide further insights into rates of carbon and electron flux in methanogenic environments.


Assuntos
Methanosarcina , Acetatos/metabolismo , Anaerobiose , Reatores Biológicos , Ecossistema , Transporte de Elétrons , Etanol/metabolismo , Genoma Arqueal , Hidrogênio/metabolismo , Metano/metabolismo , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Methanosarcina/metabolismo , Filogenia
3.
Environ Sci Technol ; 55(23): 16195-16203, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34748326

RESUMO

Microbial extracellular electron transfer plays an important role in diverse biogeochemical cycles, metal corrosion, bioelectrochemical technologies, and anaerobic digestion. Evaluation of electron uptake from pure Fe(0) and stainless steel indicated that, in contrast to previous speculation in the literature, Desulfovibrio ferrophilus and Desulfopila corrodens are not able to directly extract electrons from solid-phase electron-donating surfaces. D. ferrophilus grew with Fe(III) as the electron acceptor, but Dp. corrodens did not. D. ferrophilus reduced Fe(III) oxide occluded within porous alginate beads, suggesting that it released a soluble electron shuttle to promote Fe(III) oxide reduction. Conductive atomic force microscopy revealed that the D. ferrophilus pili are electrically conductive and the expression of a gene encoding an aromatics-rich putative pilin was upregulated during growth on Fe(III) oxide. The expression of genes for multi-heme c-type cytochromes was not upregulated during growth with Fe(III) as the electron acceptor, and genes for a porin-cytochrome conduit across the outer membrane were not apparent in the genome. The results suggest that D. ferrophilus has adopted a novel combination of strategies to enable extracellular electron transport, which may be of biogeochemical and technological significance.


Assuntos
Desulfovibrio , Geobacter , Desulfovibrio/genética , Transporte de Elétrons , Elétrons , Compostos Férricos , Oxirredução
4.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32747429

RESUMO

Electrically conductive protein nanowires appear to be widespread in the microbial world and are a revolutionary "green" material for the fabrication of electronic devices. Electrically conductive pili (e-pili) assembled from type IV pilin monomers have independently evolved multiple times in microbial history as have electrically conductive archaella (e-archaella) assembled from homologous archaellin monomers. A role for e-pili in long-range (micrometer) extracellular electron transport has been demonstrated in some microbes. The surprising finding of e-pili in syntrophic bacteria and the role of e-pili as conduits for direct interspecies electron transfer have necessitated a reassessment of routes for electron flux in important methanogenic environments, such as anaerobic digesters and terrestrial wetlands. Pilin monomers similar to those found in e-pili may also be a major building block of the conductive "cables" that transport electrons over centimeter distances through continuous filaments of cable bacteria consisting of a thousand cells or more. Protein nanowires harvested from microbes have many functional and sustainability advantages over traditional nanowire materials and have already yielded novel electronic devices for sustainable electricity production, neuromorphic memory, and sensing. e-pili can be mass produced with an Escherichia coli chassis, providing a ready source of material for electronics as well as for studies on the basic mechanisms for long-range electron transport along protein nanowires. Continued exploration is required to better understand the electrification of microbial communities with microbial nanowires and to expand the "green toolbox" of sustainable materials for wiring and powering the emerging "Internet of things."


Assuntos
Transporte de Elétrons , Fímbrias Bacterianas/metabolismo , Geobacter/metabolismo , Nanofios/ultraestrutura , Engenharia de Proteínas/métodos , Condutividade Elétrica , Proteínas de Fímbrias/metabolismo , Microscopia Eletrônica
5.
Environ Sci Technol ; 54(19): 12539-12549, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897064

RESUMO

The formation of vivianite (Fe3(PO4)2·8H2O) in iron (Fe)-dosed wastewater treatment facilities has the potential to develop into an economically feasible method of phosphorus (P) recovery. In this work, a long-term steady FeIII-dosed University of Cape Town process-membrane bioreactor (UCT-MBR) system was investigated to evaluate the role of Fe transformations in immobilizing P via vivianite crystallization. The highest fraction of FeII, to total Fe (Fetot), was observed in the anaerobic chamber, revealing that a redox condition suitable for FeIII reduction was established by improving operational and configurational conditions. The supersaturation index for vivianite in the anaerobic chamber varied but averaged ∼4, which is within the metastable zone and appropriate for its crystallization. Vivianite accounted for over 50% of the Fetot in the anaerobic chamber, and its oxidation as it passed through the aerobic chambers was slow, even in the presence of high dissolved oxygen concentrations at circumneutral pH. This study has shown that the high stability and growth of vivianite crystals in oxygenated activated sludge can allow for the subsequent separation of vivianite as a P recovery product.


Assuntos
Ferro , Fósforo , Compostos Ferrosos , Fosfatos , Esgotos , Eliminação de Resíduos Líquidos
6.
Environ Res ; 189: 109884, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678736

RESUMO

Biological treatment of high salinity organic wastewater is a significant challenge because many microorganisms involved in the anaerobic digestion process cannot survive high osmotic pressures. In order to alleviate some of the stresses associated with the treatment of high salinity wastewater, two lab-scale up-flow anaerobic sludge bed reactors with or without magnetite (100 g/L) were used to treat high salinity organic wastewater. This study showed that the bioreactor amended with magnetite had higher chemical oxygen demand removal efficiencies (90.2% ± 0.54% vs 73.1% ± 1.9%) and methane production rates (4082 ± 334 ml (standard temperature and atmospheric pressure, STP)/d vs 2640 ± 120 ml (STP)/d) than the non-amended control reactor. In addition, the consumption of volatile fatty acids (20.9 ± 3.4 mM vs 61.7 ± 2.0 mM) was accelerated. Microbial community analysis revealed that the addition of magnetite caused the enrichment of many bacterial genera known to form robust biofilms (i.e. Pseudomonas) that are also capable of extracellular electron transfer and methanogens from the genus Methanosarcina which have been shown to participate in direct interspecies electron transfer. These results show that magnetite addition could enhance the performance of anaerobic digesters treating high salinity wastewater.


Assuntos
Óxido Ferroso-Férrico , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Salinidade , Esgotos
7.
Adv Appl Microbiol ; 106: 113-192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798802

RESUMO

Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Desnitrificação , Ecossistema , Nitrificação , Águas Residuárias/química , Purificação da Água
8.
Environ Sci Technol ; 53(15): 9045-9053, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251600

RESUMO

By mimicking iron(Fe)-based phosphorus (P) immobilization in natural environments, an Fe-retrofitted UCT-MBR involving in situ vivianite crystallization for removing and recovering P from sewage was developed, and its performance was examined in this work. We show that dosing of ferrihydrite, once biological P uptake reached its limit, enabled effective ongoing P removal; whereas conventional conditions in the anaerobic chamber of the University of Cape Town (UCT) system (i.e., a sludge retention time of hours and a completely mixed sludge phase) was insufficient for a satisfactory Fe(III) bioreduction, with the overaccumulation of Fe(III) as fine particles finally resulting in severe membrane fouling and collapse in P removal. The enhancement of reductive conditions in the anaerobic chamber by lowering agitation and adding biocarriers to favor Fe(III) reduction was found to be effective in enabling ongoing P removal and recovery. The average level of effluent P was as low as 0.18 mg/L for a period of 258 d under this condition. Using chemical and spectroscopic methods, the P product was identified as primarily vivianite: Fe3(PO4)2·8H2O. The in situ crystallization of vivianite as a sink for P enabled the UCT-MBR to continuously remove and recover sewage P with no need for sludge discharge.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Cristalização , Compostos Férricos , Compostos Ferrosos , Fosfatos , Eliminação de Resíduos Líquidos
9.
Microb Ecol ; 76(3): 660-667, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29500492

RESUMO

Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater. In order to determine whether Methanosarcina species could be participating in U(VI) reduction in the subsurface, cell suspensions of Methanosarcina barkeri were incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically active M. barkeri cells; however, no U(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


Assuntos
Acetatos/metabolismo , Água Subterrânea/microbiologia , Methanosarcina/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Água Subterrânea/química , Metano/análise , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Oxirredução , Urânio/análise , Poluentes Químicos da Água/análise
10.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940542

RESUMO

Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE: This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM).


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Geobacter/genética , Geobacter/metabolismo , Inativação Metabólica/genética , Arseniato Redutases/genética , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Inativação Metabólica/fisiologia , Ferro/metabolismo
11.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258137

RESUMO

The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili.IMPORTANCEMethanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.


Assuntos
Transporte de Elétrons , Geobacter/metabolismo , Methanosarcinaceae/metabolismo , Microbiologia do Solo , Dióxido de Carbono/metabolismo , Proteínas de Fímbrias/análise , Proteínas de Fímbrias/genética , Perfilação da Expressão Gênica , Geobacter/crescimento & desenvolvimento , Metagenoma , Metano/metabolismo , Methanosarcinaceae/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento
12.
J Infect Dis ; 213(12): 1866-71, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037084

RESUMO

Granulomatous arteritis characterizes the pathology of giant cell arteritis, granulomatous aortitis, and intracerebral varicella zoster virus (VZV) vasculopathy. Because intracerebral VZV vasculopathy and giant cell arteritis are strongly associated with productive VZV infection in cerebral and temporal arteries, respectively, we evaluated human aortas for VZV antigen and VZV DNA. Using 3 different anti-VZV antibodies, we identified VZV antigen in 11 of 11 aortas with pathologically verified granulomatous arteritis, in 1 of 1 cases of nongranulomatous arteritis, and in 5 of 18 control aortas (28%) obtained at autopsy. The presence of VZV antigen in granulomatous aortitis was highly significant (P = .0001) as compared to control aortas, in which VZV antigen was never associated with pathology, indicating subclinical reactivation. VZV DNA was found in most aortas containing VZV antigen. The frequent clinical, radiological, and pathological aortic involvement in patients with giant cell arteritis correlates with the significant detection of VZV in granulomatous aortitis.


Assuntos
Aorta/patologia , Herpes Zoster/epidemiologia , Herpesvirus Humano 3/imunologia , Vasculite do Sistema Nervoso Central/epidemiologia , Anticorpos Antivirais , Antígenos Virais/análise , Antígenos Virais/imunologia , Varicela , Humanos , Imuno-Histoquímica , Artérias Temporais/patologia , Vasculite do Sistema Nervoso Central/virologia
13.
Appl Environ Microbiol ; 81(8): 2735-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662973

RESUMO

The hyperthermophilic archaeon Ferroglobus placidus can utilize a wide variety of electron donors, including hydrocarbons and aromatic compounds, with Fe(III) serving as an electron acceptor. In Fe(III)-reducing bacteria that have been studied to date, this process is mediated by c-type cytochromes and type IV pili. However, there currently is little information available about how this process is accomplished in archaea. In silico analysis of the F. placidus genome revealed the presence of 30 genes coding for putative c-type cytochrome proteins (more than any other archaeon that has been sequenced to date), five of which contained 10 or more heme-binding motifs. When cell extracts were analyzed by SDS-PAGE followed by heme staining, multiple bands corresponding to c-type cytochromes were detected. Different protein expression patterns were observed in F. placidus cells grown on soluble and insoluble iron forms. In order to explore this result further, transcriptomic studies were performed. Eight genes corresponding to multiheme c-type cytochromes were upregulated when F. placidus was grown with insoluble Fe(III) oxide compared to soluble Fe(III) citrate as an electron acceptor. Numerous archaella (archaeal flagella) also were observed on Fe(III)-grown cells, and genes coding for two type IV pilin-like domain proteins were differentially expressed in Fe(III) oxide-grown cells. This study provides insight into the mechanisms for dissimilatory Fe(III) respiration by hyperthermophilic archaea.


Assuntos
Proteínas Arqueais/genética , Archaeoglobales/genética , Citocromos c/genética , Compostos Férricos/metabolismo , Regulação da Expressão Gênica , Genoma Arqueal , Proteínas Arqueais/metabolismo , Archaeoglobales/metabolismo , Citocromos c/metabolismo , Dados de Sequência Molecular , Oxirredução , Proteoma , Análise de Sequência de DNA , Transcriptoma
14.
MMWR Morb Mortal Wkly Rep ; 64(28): 771-2, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26203632

RESUMO

In March 2014, the Colorado Department of Public Health and Environment (CDPHE) learned of the death of a man aged 19 years after consuming an edible marijuana product. CDPHE reviewed autopsy and police reports to assess factors associated with his death and to guide prevention efforts. The decedent's friend, aged 23 years, had purchased marijuana cookies and provided one to the decedent. A police report indicated that initially the decedent ate only a single piece of his cookie, as directed by the sales clerk. Approximately 30-60 minutes later, not feeling any effects, he consumed the remainder of the cookie. During the next 2 hours, he reportedly exhibited erratic speech and hostile behaviors. Approximately 3.5 hours after initial ingestion, and 2.5 hours after consuming the remainder of the cookie, he jumped off a fourth floor balcony and died from trauma. The autopsy, performed 29 hours after time of death, found marijuana intoxication as a chief contributing factor. Quantitative toxicologic analyses for drugs of abuse, synthetic cannabinoid, and cathinones ("bath salts") were performed on chest cavity blood by gas chromatography and mass spectrometry. The only confirmed findings were cannabinoids (7.2 ng/mL delta-9 tetrahydrocannabinol [THC] and 49 ng/mL delta-9 carboxy-THC, an inactive marijuana metabolite). The legal whole blood limit of delta-9 THC for driving a vehicle in Colorado is 5.0 ng/mL. This was the first reported death in Colorado linked to marijuana consumption without evidence of polysubstance use since the state approved recreational use of marijuana in 2012.


Assuntos
Cannabis/toxicidade , Ingestão de Alimentos , Colorado , Evolução Fatal , Humanos , Masculino , Adulto Jovem
15.
Microbiology (Reading) ; 160(Pt 12): 2694-2709, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25269449

RESUMO

Ferroglobus placidus was discovered to oxidize completely the aromatic amino acids tyrosine, phenylalanine and tryptophan when Fe(III) oxide was provided as an electron acceptor. This property had not been reported previously for a hyperthermophilic archaeon. It appeared that F. placidus follows a pathway for phenylalanine and tryptophan degradation similar to that of mesophilic nitrate-reducing bacteria, Thauera aromatica and Aromatoleum aromaticum EbN1. Phenylacetate, 4-hydroxyphenylacetate and indole-3-acetate were formed during anaerobic degradation of phenylalanine, tyrosine and tryptophan, respectively. Candidate genes for enzymes involved in the anaerobic oxidation of phenylalanine to phenylacetate (phenylalanine transaminase, phenylpyruvate decarboxylase and phenylacetaldehyde : ferredoxin oxidoreductase) were identified in the F. placidus genome. In addition, transcription of candidate genes for the anaerobic phenylacetate degradation, benzoyl-CoA degradation and glutaryl-CoA degradation pathways was significantly upregulated in microarray and quantitative real-time-PCR studies comparing phenylacetate-grown cells with acetate-grown cells. These results suggested that the general strategies for anaerobic degradation of aromatic amino acids are highly conserved amongst bacteria and archaea living in both mesophilic and hyperthermophilic environments. They also provided insights into the diverse metabolism of Archaeoglobaceae species living in hyperthermophilic environments.


Assuntos
Aminoácidos Aromáticos/metabolismo , Archaeoglobales/metabolismo , Anaerobiose , Biotransformação , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Redes e Vias Metabólicas/genética , Análise em Microsséries , Dados de Sequência Molecular , Oxirredução , Fenilacetatos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
16.
Bioresour Technol ; 393: 130055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995871

RESUMO

This study investigated the use of H2-driven CO2 biomethanation for integrated CO2 capture and conversion (iCCC). Anaerobic chambers containing Na2CO3-amended microbial growth medium provided with H2 were inoculated with anaerobic granular sludge. Microorganisms were enriched that could regenerate carbonate by using the bicarbonate formed from CO2 absorption to generate methane. Multiple absorption-regeneration cycles were performed and effective restoration of CO2 absorption capacity and stable carbonate recycling via CO2 biomethanation were observed for CO2 absorbents adjusted to three different pH values (9.0, 9.5, and 10.0). The pH = 10.0 group had the highest CO2 absorption capacity; 65.3 mmol/L in the 5th cycle. A slight alkaline inhibition of acetoclastic methanogenesis occurred near the end of regeneration, but had limited impact on the cyclic performance of the iCCC process. Microbial communities were dominated by H2-utilizing and alkali-tolerant species that could participate in CO2 biomethanation and survive under alternating neutral and alkaline conditions.


Assuntos
Dióxido de Carbono , Microbiota , Reatores Biológicos , Esgotos , Anaerobiose , Metano/química , Carbonatos
17.
mLife ; 3(1): 110-118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827509

RESUMO

Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage. Some microbes are capable of direct metal-to-microbe electron transfer (electrobiocorrosion), but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation. Previous studies have suggested that respiration with 316L  stainless steel as the electron donor is indicative of electrobiocorrosion, because, unlike pure Fe0, 316L  stainless steel does not abiotically generate H2 as an intermediary electron carrier. Here, we report that all of the methanogens (Methanosarcina vacuolata, Methanothrix soehngenii, and Methanobacterium strain IM1) and acetogens (Sporomusa ovata and Clostridium ljungdahlii) evaluated respired with pure Fe0 as the electron donor, but only M. vacuolata, Mx. soehngenii, and S. ovata were capable of stainless steel electrobiocorrosion. The electrobiocorrosive methanogens required acetate as an additional energy source in order to produce methane from stainless steel. Cocultures of S. ovata and Mx. soehngenii demonstrated how acetogens can provide acetate to methanogens during corrosion. Not only was Methanobacterium strain IM1 not capable of electrobiocorrosion, but it also did not accept electrons from Geobacter metallireducens, an effective electron-donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe0. The finding that M. vacuolata, Mx. soehngenii, and S. ovata are capable of electrobiocorrosion, despite a lack of the outer-surface c-type cytochromes previously found to be important in other electrobiocorrosive microbes, demonstrates that there are multiple microbial strategies for making electrical contact with Fe0.

18.
mBio ; 15(5): e0069024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717196

RESUMO

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Assuntos
Citocromos , Compostos Férricos , Geobacter , Oxirredução , Transporte de Elétrons , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compostos Férricos/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo
19.
Appl Environ Microbiol ; 79(5): 1646-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275510

RESUMO

Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r(2) = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance.


Assuntos
Perfilação da Expressão Gênica/métodos , Geobacter/crescimento & desenvolvimento , Água Subterrânea/microbiologia , Proteínas Ribossômicas/biossíntese , Acetatos/metabolismo , Biodegradação Ambiental , DNA Bacteriano/química , DNA Bacteriano/genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA , Urânio/metabolismo
20.
mBio ; 14(4): e0036023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37306514

RESUMO

Methanothrix is widely distributed in natural and artificial anoxic environments and plays a major role in global methane emissions. It is one of only two genera that can form methane from acetate dismutation and through participation in direct interspecies electron transfer (DIET) with exoelectrogens. Although Methanothrix is a significant member of many methanogenic communities, little is known about its physiology. In this study, transcriptomics helped to identify potential routes of electron transfer during DIET between Geobacter metallireducens and Methanothrix thermoacetophila. Additions of magnetite to cultures significantly enhanced growth by acetoclastic methanogenesis and by DIET, while granular activated carbon (GAC) amendments impaired growth. Transcriptomics suggested that the OmaF-OmbF-OmcF porin complex and the octaheme outer membrane c-type cytochrome encoded by Gmet_0930, were important for electron transport across the outer membrane of G. metallireducens during DIET with Mx. thermoacetophila. Clear differences in the metabolism of Mx. thermoacetophila when grown via DIET or acetate dismutation were not apparent. However, genes coding for proteins involved in carbon fixation, the sheath fiber protein MspA, and a surface-associated quinoprotein, SqpA, were highly expressed in all conditions. Expression of gas vesicle genes was significantly lower in DIET- than acetate-grown cells, possibly to facilitate better contact between membrane-associated redox proteins during DIET. These studies reveal potential electron transfer mechanisms utilized by both Geobacter and Methanothrix during DIET and provide important insights into the physiology of Methanothrix in anoxic environments. IMPORTANCE Methanothrix is a significant methane producer in a variety of methanogenic environments including soils and sediments as well as anaerobic digesters. Its abundance in these anoxic environments has mostly been attributed to its high affinity for acetate and its ability to grow by acetoclastic methanogenesis. However, Methanothrix species can also generate methane by directly accepting electrons from exoelectrogenic bacteria through direct interspecies electron transfer (DIET). Methane production through DIET is likely to further increase their contribution to methane production in natural and artificial environments. Therefore, acquiring a better understanding of DIET with Methanothrix will help shed light on ways to (i) minimize microbial methane production in natural terrestrial environments and (ii) maximize biogas formation by anaerobic digesters treating waste.


Assuntos
Geobacter , Transporte de Elétrons , Geobacter/metabolismo , Elétrons , Methanosarcinaceae/metabolismo , Metano/metabolismo , Acetatos/metabolismo , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA