Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 20(16): 2122-2126, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31237987

RESUMO

We investigate the tautomerization of phenol catalyzed by acid-base active pair sites in Lewis acidic Beta zeolites by means of density functional calculations using the M06-L functional. An analysis of the catalytic mechanism shows that hafnium on the Beta zeolite causes the strongest absorption of phenol compared to zirconium, tin, and germanium. This can be rationalized by the highest delocalization of electron density between the Lewis site and the oxygen of phenol which can in turn be quantified by the perturbative E(2) stabilization energy. The reaction is assumed to proceed in two steps, the phenol O-H bond dissociation and the protonation of the intermediate to form the cyclohexa-2,4-dien-1-one product. The rate determining step is the first one with a free activation energy of 26.3, 25.0, 22.1 and 22.7 kcal mol-1 for Ge-Beta, Sn-Beta, Zr-Beta, and Hf-Beta zeolites, respectively. The turnover frequencies follow these reaction barriers. Hence, the intrinsic catalytic activity of the Lewis acidic Beta zeolites studied here is in the order of Hf-Beta≈Zr-Beta>Sn-Beta> Ge-Beta for the tautomerization of phenol.

2.
Chem Sci ; 15(6): 2026-2036, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332820

RESUMO

The pursuit of high-performing cathode materials for next-generation lithium ion batteries has focused on increasing the nickel content of the material. However, this study reveals that particle size uniformity is a more decisive factor in battery performance than the nickel content alone. Using in operando X-ray diffraction, in situ gas evolution, and Atlung intercalant diffusion, we compared two promising cathode materials: LiNi0.8Mn0.1Co0.1O2 (NMC80) and LiNi0.9Mn0.05Co0.05O2 (NMC90). We found that the NMC90 cell, with its more uniform particle size, exhibits a remarkable accumulation energy density of 558 kW h kgNMC-1, which is 22% higher than that of the NMC80 cell. Also, the NMC90 cell unexpectedly has a 20% better capacity retention, a 50-fold higher discharge capacity at the 5C rate, and an Atlung lithium diffusion coefficient that is one order of magnitude higher after 1000 cycles. In situ gas analysis at a high voltage of 4.5 V reveals that the NMC80 cell generates 1.75 times more CO2 than the NMC90 cell. These findings illuminate the intricate relationship between the nickel content, particle size uniformity, and battery performance. They offer vital insights for optimizing cathode materials in future lithium ion batteries.

3.
ChemSusChem ; : e202400053, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38638076

RESUMO

This research elucidates novel insights into the electrochemical properties and degradation phenomena of propylene carbonate (PC)-based supercapacitors at a large-scale 18650 cylindrical jelly-roll cell level. Central to our findings is the identification of 2-ethyl-4-methyl-1,3-dioxolane (EMD) as a hitherto undocumented decomposition by-product, highlighting the nuanced complexity of PC electrolyte stability. We further demonstrate that elevated operational voltages precipitate accelerated electrolyte degradation, underscoring the criticality of defining the operational voltage window for maximizing device longevity. Employing advanced analytical techniques, including gas chromatography-mass spectrometry (GC-MS), this study meticulously analyzes electrolyte decomposition mechanisms. The outcomes offer pivotal insights into the operational constraints and chemical resilience of PC-based supercapacitors, contributing significantly to the optimization of supercapacitor design and application. By delineating a specific decomposition pathway, this investigation enriches the understanding of electrochemical dynamics in supercapacitor systems, providing a foundation for future research and technological advancement in energy storage devices.

4.
Chem Commun (Camb) ; 59(69): 10376-10379, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37534758

RESUMO

Li-S batteries with a sulphur loading content of 5 mg cm-2 were produced as large-scale 18 650 cylindrical cells. We have found that a key failure mode of cylindrical Li-S battery cells is the severe capacity fading during the galvanostatic charge-discharge process due to the corrosion of the electrodes, the electrolyte decomposition, and the severe polysulphide shuttling effect.

5.
Chem Commun (Camb) ; 58(6): 779-782, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34874375

RESUMO

The safety of Li-ion batteries is one of the most important factors, if not the most, determining their practical applications. We have found that free carbonate-based solvent molecules in the hybrid electrolyte system can cause severe safety concerns. Mixing ionic liquids with a carbonate-based solvent as the co-solvent at a fixed salt concentration of 1 M LiPF6 can lead to free carbonate-based molecules causing poor charge storage performance and safety concerns.

6.
Chem Commun (Camb) ; 58(81): 11382-11385, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124969

RESUMO

There is a controversial issue based on the particle cracking of the Ni-rich layered oxide cathode materials whether it occurs at the primary particles or the grain boundary. Herein, we found that the microcracking of NMC811 does not occur at single crystalline primary particles even abused at a severe upper cell voltage of 4.7 V having a lot of gas evolution since the single-crystal NMC811 has superior mechanical stability. The capacity retentions determined at 1C rate and a 100% state of charge (SOC) are 80% and 50% after 1000 cycles for single crystal and polycrystal NMC811, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA