Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 100(3): 353-362, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31527828

RESUMO

Cancer cells, including malignant lymphoma cells, alter their metabolism, termed "metabolic reprograming," on initiation of malignant transformation as well as upon accumulation of genetic abnormalities. Here, to identify a novel therapeutic target involved in the metabolic changes during malignant lymphoma, we performed global analyses combined with shotgun proteomics, in silico database analysis, and clinic-pathologic analysis of nonneoplastic lymphoid tissue and malignant lymphoma tissue and verified the molecular functions in vitro. In total, 2002 proteins were detected from both samples and proteins related to fatty acid beta-oxidation (FAO) were detected more frequently in malignant lymphoma tissue. Consequently, the most frequently detected protein, the mitochondrial trifunctional enzyme subunit-alpha (HADHA), was identified as a potential target. Immunohistochemical analyses revealed that HADHA tended to be overexpressed in a high-grade subtype of malignant lymphoma tissue. Clinicopathologic study revealed that HADHA overexpression was correlated with significantly worse overall survival (P = 0.013) and was an independent prognostic predictor in diffuse large B-cell lymphoma (P = 0.027). In vitro, downregulation of HADHA negatively regulated cell growth by causing G0/G1 arrest (P = 0.0008) similar to treatment with etomoxir, an inhibitor of FAO (P = 0.032). Moreover, downregulation of HADHA increased the susceptibility to doxorubicin (P = 0.002) and etoposide (P = 0.004). Moreover, these phenotypes were confirmed in an HADHA knockout system. Thus, we provide a basis for a novel therapeutic strategy through the regulation of HADHA and FAO in patients with refractory malignant lymphoma.


Assuntos
Linfoma , Subunidade alfa da Proteína Mitocondrial Trifuncional , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Descoberta de Drogas , Ácidos Graxos/metabolismo , Feminino , Humanos , Tecido Linfoide/química , Tecido Linfoide/metabolismo , Linfoma/metabolismo , Linfoma/mortalidade , Linfoma/patologia , Masculino , Pessoa de Meia-Idade , Subunidade alfa da Proteína Mitocondrial Trifuncional/antagonistas & inibidores , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredução , Proteoma/análise , Proteoma/metabolismo
2.
Pathology ; 54(3): 286-293, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34531036

RESUMO

In haematological malignancies, such as malignant lymphoma, reprogramming of fatty acid metabolism favours tumour cell survival and drug resistance. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), an enzyme involved in fatty acid beta-oxidation (FAO), is overexpressed in high-grade lymphoma and is a predictor of poor prognosis in diffuse large B-cell lymphoma (DLBCL). HADHB forms a heterodimer with HADHA and functions as an FAO enzyme together with HADHA; however, the relevance of its expression in malignant lymphoma is unknown. In this study, we investigated the roles and antitumour effects of HADHB expression in malignant lymphoma. Immunohistochemical analysis showed that HADHB was frequently overexpressed in the high-grade lymphoma subtype. HADHB overexpression was observed in 68% (87/128) of DLBCL cases and was an independent predictor of poor prognosis (p=0.001). In vitro analysis demonstrated that HADHB knockdown suppressed cell proliferation in LCL-K and MD901 cells (p<0.05). Additionally, treatment with the FAO inhibitor, ranolazine, increased cell death in control cells compared with that in HADHB knockdown LCL-K and MD901 cells (p<0.01). Cell death was also suppressed by the ferroptosis inhibitor, ferrosatin-1, in LCL-K and MD901 cells (p<0.05). Collectively, these findings provide basic evidence for the development of new cell death-based therapies for refractory malignant lymphoma. We plan to perform prospective studies and preclinical studies using animal models to confirm these results.


Assuntos
Linfoma Difuso de Grandes Células B , Subunidade beta da Proteína Mitocondrial Trifuncional , Animais , Ácidos Graxos/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Prognóstico , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA