Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042775

RESUMO

The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.


Assuntos
Citotoxicidade Imunológica , Neoplasias/metabolismo , Radioterapia , Citotoxicidade Celular Dependente de Anticorpos , Proteínas de Bactérias , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Perforina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Estreptolisinas
2.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137176

RESUMO

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Assuntos
Citocinese , Linfócitos , Dano ao DNA , Testes para Micronúcleos/métodos , Radiação Ionizante
3.
Magn Reson Med ; 84(3): 1250-1263, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32057115

RESUMO

PURPOSE: MRI biomarkers of tumor response to treatment are typically obtained from parameters derived from a model applied to pre-treatment and post-treatment data. However, as tumors are spatially and temporally heterogeneous, different models may be necessary in different tumor regions, and model suitability may change over time. This work evaluates how the suitability of two diffusion-weighted (DW) MRI models varies spatially within tumors at the voxel level and in response to radiotherapy, potentially allowing inference of qualitatively different tumor microenvironments. METHODS: DW-MRI data were acquired in CT26 subcutaneous allografts before and after radiotherapy. Restricted and time-independent diffusion models were compared, with regions well-described by the former hypothesized to reflect cellular tissue, and those well-described by the latter expected to reflect necrosis or oedema. Technical and biological validation of the percentage of tissue described by the restricted diffusion microstructural model (termed %MM) was performed through simulations and histological comparison. RESULTS: Spatial and radiotherapy-related variation in model suitability was observed. %MM decreased from a mean of 64% at baseline to 44% 6 days post-radiotherapy in the treated group. %MM correlated negatively with the percentage of necrosis from histology, but overestimated it due to noise. Within MM regions, microstructural parameters were sensitive to radiotherapy-induced changes. CONCLUSIONS: There is spatial and radiotherapy-related variation in different models' suitability for describing diffusion in tumor tissue, suggesting the presence of different and changing tumor sub-regions. The biological and technical validation of the proposed %MM cancer imaging biomarker suggests it correlates with, but overestimates, the percentage of necrosis.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias , Difusão , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Microambiente Tumoral
4.
Blood ; 121(2): 251-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23086756

RESUMO

Passive immunotherapy with monoclonal antibodies has improved outcome for patients with B-cell malignancies, although many still relapse and little progress has been made with T-cell malignancies. Novel treatment approaches are clearly required in this disease setting. There has been much recent interest in developing therapeutic approaches to enhance antitumor immune responses using novel immunomodulatory agents in combination with standard of care treatments. Here we report that intravenous administration of the Toll-like receptor 7 (TLR7) agonist, R848 in combination with radiation therapy (RT), leads to the longstanding clearance of tumor in T- and B-cell lymphoma bearing mice. In combination, TLR7/RT therapy leads to the expansion of tumor antigen-specific CD8(+) T cells and improved survival. Furthermore, those mice that achieve long-term clearance of tumor after TLR7/RT therapy are protected from subsequent tumor rechallenge by the generation of a tumor-specific memory immune response. Our findings demonstrate the potential for enhancing the efficacy of conventional cytotoxic anticancer therapy through combination with a systemically administered TLR7 agonist to improve antitumor immune responses and provide durable remissions.


Assuntos
Antineoplásicos/administração & dosagem , Imidazóis/administração & dosagem , Linfoma/imunologia , Linfoma/radioterapia , Glicoproteínas de Membrana/agonistas , Receptor 7 Toll-Like/agonistas , Animais , Antineoplásicos/uso terapêutico , Terapia Combinada , Modelos Animais de Doenças , Imidazóis/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
5.
Int J Cancer ; 135(4): 820-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24390981

RESUMO

Although topical TLR7 therapies such as imiquimod have proved successful in the treatment of dermatological malignancy, systemic delivery may be required for optimal immunotherapy of nondermatological tumors. We report that intravenous delivery of the novel small molecule TLR7 agonist, DSR-6434, leads to the induction of type 1 interferon and activation of T and B lymphocytes, NK and NKT cells. Our data demonstrate that systemic administration of DSR-6434 enhances the efficacy of ionizing radiation (IR) and leads to improved survival in mice bearing either CT26 or KHT tumors. Of the CT26 tumor-bearing mice that received combined therapy, 55% experienced complete tumor resolution. Our data reveal that these long-term surviving mice have a significantly greater frequency of tumor antigen specific CD8(+) T cells when compared to age-matched tumor-naïve cells. To evaluate therapeutic effects on spontaneous metastases, we showed that combination of DSR-6434 with local IR of the primary tumor significantly reduced metastatic burden in the lung, when compared to time-matched cohorts treated with IR alone. The data demonstrate that systemic administration of the novel TLR7 agonist DSR-6434 in combination with IR primes an antitumor CD8(+) T-cell response leading to improved survival in syngeneic models of colorectal carcinoma and fibrosarcoma. Importantly, efficacy extends to sites outside of the field of irradiation, reducing metastatic load. Clinical evaluation of systemic TLR7 therapy in combination with IR for the treatment of solid malignancy is warranted.


Assuntos
Adenina/análogos & derivados , Imunoterapia/métodos , Glicoproteínas de Membrana/agonistas , Neoplasias/radioterapia , Receptor 7 Toll-Like/agonistas , Adenina/administração & dosagem , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/efeitos da radiação , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/efeitos da radiação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Metástase Neoplásica , Transplante de Neoplasias , Radiação Ionizante , Baço/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos da radiação
6.
Blood ; 119(15): 3523-33, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22354003

RESUMO

Monoclonal antibodies (mAbs) have revolutionized the treatment of B-cell malignancies. Although Fc-dependent mechanisms of mAb-mediated tumor clearance have been extensively studied, the ability of mAbs to directly evoke programmed cell death (PCD) in the target cell and the underlying mechanisms involved remain under-investigated. We recently demonstrated that certain mAbs (type II anti-CD20 and anti-HLA DR mAbs) potently evoked PCD through an actin-dependent, lysosome-mediated process. Here, we reveal that the induction of PCD by these mAbs, including the type II anti-CD20 mAb GA101 (obinutuzumab), directly correlates with their ability to produce reactive oxygen species (ROS) in human B-lymphoma cell lines and primary B-cell chronic lymphocytic leukemia cells. ROS scavengers abrogated mAb-induced PCD indicating that ROS are required for the execution of cell death. ROS were generated downstream of mAb-induced actin cytoskeletal reorganization and lysosome membrane permeabilization. ROS production was independent of mitochondria and unaffected by BCL-2 overexpression. Instead, ROS generation was mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. These findings provide further insights into a previously unrecognized role for NADPH oxidase-derived ROS in mediating nonapoptotic PCD evoked by mAbs in B-cell malignancies. This newly characterized cell death pathway may potentially be exploited to eliminate malignant cells, which are refractory to conventional chemotherapy and immunotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Leucemia/patologia , Linfoma/patologia , Espécies Reativas de Oxigênio/farmacologia , Actinas/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/imunologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/fisiologia , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Blood ; 117(17): 4519-29, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21378274

RESUMO

The anti-CD20 mAb rituximab has substantially improved the clinical outcome of patients with a wide range of B-cell malignancies. However, many patients relapse or fail to respond to rituximab, and thus there is intense investigation into the development of novel anti-CD20 mAbs with improved therapeutic efficacy. Although Fc-FcγR interactions appear to underlie much of the therapeutic success with rituximab, certain type II anti-CD20 mAbs efficiently induce programmed cell death (PCD), whereas rituximab-like type I anti-CD20 mAbs do not. Here, we show that the humanized, glycoengineered anti-CD20 mAb GA101 and derivatives harboring non-glycoengineered Fc regions are type II mAb that trigger nonapoptotic PCD in a range of B-lymphoma cell lines and primary B-cell malignancies. We demonstrate that GA101-induced cell death is dependent on actin reorganization, can be abrogated by inhibitors of actin polymerization, and is independent of BCL-2 overexpression and caspase activation. GA101-induced PCD is executed by lysosomes which disperse their contents into the cytoplasm and surrounding environment. Taken together, these findings reveal that GA101 is able to potently elicit actin-dependent, lysosomal cell death, which may potentially lead to improved clearance of B-cell malignancies in vivo.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linfoma de Células B , Actinas/efeitos dos fármacos , Actinas/imunologia , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais Murinos/farmacologia , Catepsinas/farmacologia , Adesão Celular/imunologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/imunologia , Rituximab
8.
Oncoimmunology ; 12(1): 2223094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332616

RESUMO

Despite breakthroughs in immune checkpoint inhibitors (ICI), the majority of tumors, including those poorly infiltrated by CD8+ T cells or heavily infiltrated by immunosuppressive immune effector cells, are unlikely to result in clinically meaningful tumor responses. Radiation therapy (RT) has been combined with ICI to potentially overcome this resistance and improve response rates but reported clinical trial results have thus far been disappointing. Novel approaches are required to overcome this resistance and reprogram the immunosuppressive tumor microenvironment (TME) and address this major unmet clinical need. Using diverse preclinical tumor models of prostate and bladder cancer, including an autochthonous prostate tumor (Pten-/-/trp53-/-) that respond poorly to radiation therapy (RT) and anti-PD-L1 combinations, the key drivers of this resistance within the TME were profiled and used to develop rationalized combination therapies that simultaneously enhance activation of anti-cancer T cell responses and reprogram the immunosuppressive TME. The addition of anti-CD40mAb to RT resulted in an increase in IFN-y signaling, activation of Th-1 pathways with an increased infiltration of CD8+ T-cells and regulatory T-cells with associated activation of the CTLA-4 signaling pathway in the TME. Anti-CTLA-4mAb in combination with RT further reprogrammed the immunosuppressive TME, resulting in durable, long-term tumor control. Our data provide novel insights into the underlying mechanisms of the immunosuppressive TME that result in resistance to RT and anti-PD-1 inhibitors and inform therapeutic approaches to reprogramming the immune contexture in the TME to potentially improve tumor responses and clinical outcomes.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Masculino , Humanos , Linfócitos T Reguladores/metabolismo , Transdução de Sinais , Terapia Combinada , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/radioterapia
9.
Front Immunol ; 14: 1160116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304285

RESUMO

Introduction: The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results: HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion: Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.


Assuntos
Ligante de CD40 , Neoplasias , Animais , Camundongos , Antígenos CD40 , Células Apresentadoras de Antígenos , Macrófagos , Neoplasias/radioterapia , Modelos Animais de Doenças , Microambiente Tumoral
10.
Front Cell Dev Biol ; 11: 1270398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020903

RESUMO

Introduction: The glycoengineered type II anti-CD20 monoclonal antibody obinutuzumab has been licensed for treatment in follicular non-Hodgkin lymphoma and B-CLL following clinical trials demonstrating superior outcomes to standard of care treatment. However, ultimately many patients still relapse, highlighting the need to understand the mechanisms behind treatment failure to improve patient care. Resistance to chemotherapy is often caused by the ability of malignant B-cells to migrate to the bone marrow and home into the stromal layer. Therefore, this study aimed to investigate whether stromal cells were also able to inhibit type II anti-CD20 antibody mechanisms of action, contributing to resistance to therapy. Methods: A stromal-tumor co-culture was established in vitro between Raji or Daudi B-cell tumor cells and M210B4 stromal cells in 24 well plates. Results: Contact with stromal cells was able to protect tumor cells from obinutuzumab mediated programmed cell death (PCD), antibody dependent cellular phagocytosis and antibody dependent cellular cytotoxicity. Furthermore, such protection required direct contact between stroma and tumor cells. Stromal cells appeared to interfere with obinutuzumab mediated B-cell homotypic adhesion through inhibiting and reversing actin remodelling, potentially as a result of stromal-tumor cell contact leading to downregulation of CD20 on the surface of tumor cells. Further evidence for the potential role of CD20 downregulation comes through the reduction in surface CD20 expression and inhibition of obinutuzumab mediated PCD when tumor cells are treated with Ibrutinib in the presence of stromal cells. The proteomic analysis of tumor cells after contact with stromal cells led to the identification of a number of altered pathways including those involved in cell adhesion and the actin cytoskeleton and remodeling. Discussion: This work demonstrates that contact between tumor cells and stromal cells leads to inhibition of Obinutuzumab effector functions and has important implications for future therapies to improve outcomes to anti-CD20 antibodies. A deeper understanding of how anti-CD20 antibodies interact with stromal cells could prove a useful tool to define better strategies to target the micro-environment and ultimately improve patient outcomes in B-cell malignancies.

11.
Oncoimmunology ; 12(1): 2222560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363104

RESUMO

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia
12.
Nat Rev Immunol ; 22(2): 124-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34211187

RESUMO

Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-ß (TGFß). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Imunidade , Imunomodulação , Imunoterapia
13.
Cancers (Basel) ; 13(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530329

RESUMO

Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations.

14.
Radiat Oncol ; 15(1): 254, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148287

RESUMO

Radiotherapy (RT) is a highly effective anti-cancer therapy delivered to around 50-60% of patients. It is part of therapy for around 40% of cancer patients who are cured of their disease. Until recently, the focus of this anti-tumour efficacy has been on the direct tumour cytotoxicity and RT-induced DNA damage. Recently, the immunomodulatory effects of RT on the tumour microenvironment have increasingly been recognized. There is now intense interest in potentially using RT to induce an anti-tumour immune response, which has led to rethinking into how the efficacy of RT could be further enhanced. Following the breakthrough of immune check point inhibitors (ICIs), a new era of immuno-oncology (IO) agents has emerged and established immunotherapy as a routine part of cancer treatment. Despite ICI improving outcomes in many cancer types, overall durable responses occur in only a minority of patients. The immunostimulatory effects of RT make combinations with ICI attractive to potentially amplify anti-tumour immunity resulting in increased tumour responses and improved outcomes. In contrast, tumours with profoundly immunosuppressive tumour microenvironments, dominated by myeloid-derived cell populations, remain a greater clinical challenge and RT may potentially further enhance the immunosuppression. To harness the full potential of RT and IO agent combinations, further insights are required to enhance our understanding of the role these immunosuppressive myeloid populations play, how RT influences these populations and how they may be therapeutically manipulated in combination with RT to improve outcomes further. These are exciting times with increasing numbers of IO targets being discovered and IO agents undergoing clinical evaluation. Multidisciplinary research collaborations will be required to establish the optimal parameters for delivering RT (target volume, dose and fractionation) in combination with IO agents, including scheduling to achieve maximal therapeutic efficacy.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/radioterapia , Microambiente Tumoral , Terapia Combinada , Humanos , Imunoterapia , Neoplasias/imunologia , Linfócitos T/fisiologia
15.
Int J Radiat Oncol Biol Phys ; 108(1): 27-37, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339645

RESUMO

The premise that therapies targeting immune checkpoints can enhance radiation therapy (RT)-induced antitumor immunity is being explored rigorously in the preclinical setting, and early clinical trials testing this hypothesis are beginning to report. Although such approaches might prove efficacious in certain settings, it is likely that many tumor types, particularly those that have a deeply immune-suppressed microenvironment with little or no T cell infiltration, will require alternative approaches. Thus, there is now considerable drive to develop novel immune modulatory therapies that target other areas of the cancer immunity cycle. Toll-like receptors (TLRs) are expressed on sentinel immune cells and play a key role in the host defense against invading pathogens. Innate sensing via TLR-mediated detection of pathogen-derived molecular patterns can lead to maturation of antigen-presenting cells and downstream activation of adaptive immunity. After demonstrating promising efficacy in preclinical studies, drugs that stimulate TLR have been approved for use clinically, albeit to a limited extent. There is a growing body of preclinical evidence that novel agonists targeting TLR3, TLR7/8, or TLR9 in combination with RT might lead to enhanced antitumor immunity. Mechanistic studies have revealed that TLR agonists enhance dendritic cell-mediated T cell priming after RT, in some cases leading to the generation of systemic antitumor immunity and immune memory. In this report, we describe results from preclinical studies that advocate the strategy of combining RT with TLR agonists, discuss reported mechanisms of action, and explore the exciting opportunities of how this approach may be successfully translated into clinical practice.


Assuntos
Neoplasias/imunologia , Neoplasias/radioterapia , Receptores Toll-Like/agonistas , Animais , Terapia Combinada , Humanos , Neoplasias/tratamento farmacológico
16.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003551

RESUMO

The prostate cancer (PCa) field lacks clinically relevant, syngeneic mouse models which retain the tumour microenvironment observed in PCa patients. This study establishes a cell line from prostate tumour tissue derived from the Pten-/-/trp53-/- mouse, termed DVL3 which when subcutaneously implanted in immunocompetent C57BL/6 mice, forms tumours with distinct glandular morphology, strong cytokeratin 8 and androgen receptor expression, recapitulating high-risk localised human PCa. Compared to the commonly used TRAMP C1 model, generated with SV40 large T-antigen, DVL3 tumours are immunologically cold, with a lower proportion of CD8+ T-cells, and high proportion of immunosuppressive myeloid derived suppressor cells (MDSCs), thus resembling high-risk PCa. Furthermore, DVL3 tumours are responsive to fractionated RT, a standard treatment for localised and metastatic PCa, compared to the TRAMP C1 model. RNA-sequencing of irradiated DVL3 tumours identified upregulation of type-1 interferon and STING pathways, as well as transcripts associated with MDSCs. Upregulation of STING expression in tumour epithelium and the recruitment of MDSCs following irradiation was confirmed by immunohistochemistry. The DVL3 syngeneic model represents substantial progress in preclinical PCa modelling, displaying pathological, micro-environmental and treatment responses observed in molecular high-risk disease. Our study supports using this model for development and validation of treatments targeting PCa, especially novel immune therapeutic agents.

17.
Cancer Res ; 67(3): 1335-43, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283171

RESUMO

Radioimmunotherapy is a highly effective treatment for some hematologic malignancies; however, the underlying mechanisms of tumor clearance remain poorly understood. We have previously shown that both targeted radiation using (131)I-labeled anti-MHC class II (MHCII) monoclonal antibody (mAb) plus mAb signaling with unlabeled anti-idiotype are required for the long-term clearance of tumor in syngeneic murine lymphoma models. In this study, we have investigated how the microdistribution of the targeted radiation component of this combination affects the long-term clearance of lymphoma. (131)I-labeled mAb targeting CD45 and MHCII antigens was found to deliver similar doses of radiation to tumor-bearing organ using conventional dosimetry ( approximately 1.0 Gy per MBq when (131)I was labeled to 500 mug mAb and given i.v. per mouse), but when used as radiation vectors in combination therapy only, (131)I-anti-MHCII plus anti-idiotype produced long-term survival. The profound differences in therapy did not seem to be dependent on levels of (131)I-mAb tumor-binding or antibody-dependent cytotoxicity. Instead, the microscopic intratumoral dosimetry seemed to be critical with the (131)I-anti-MHCII, delivering more concentrated and therefore substantially higher radiation dose to tumor cells. When the administered activity of (131)I-anti-CD45 was increased, a radiation dose response was shown in the presence of anti-idiotype and long-term survival was seen. We believe that these new insights should influence the selection of new antigen targets and the design of dosimetric methods in radioimmunotherapy of lymphoma.


Assuntos
Radioisótopos do Iodo/administração & dosagem , Linfoma de Células B/radioterapia , Radioimunoterapia/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Antígenos Comuns de Leucócito/imunologia , Linfoma de Células B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Radiometria
18.
EJNMMI Res ; 9(1): 18, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783791

RESUMO

PURPOSE: We have previously developed the caspase-based radiotracer, 18F-ICMT-11, for PET imaging to monitor treatment response. We further validated 18F-ICMT-11 specificity in a murine melanoma death-switch tumour model with conditional activation of caspase-3 induced by doxycycline. METHODS: Caspase-3/7 activity and cellular uptake of 18F-ICMT-11, 18F-ML-10 and 18F-FDG were assessed in B16ova and B16ovaRevC3 cells after death-switch induction. Death-switch induction was confirmed in vivo in xenograft tumours, and 18F-ICMT-11 and 18F-ML-10 biodistribution was assessed by ex vivo gamma counting of select tissues. PET imaging was performed with 18F-ICMT-11, 18F-ML-10 and 18F-FDG. Caspase-3 activation was confirmed by immunohistochemistry. RESULTS: Significantly increased caspase-3/7 activity was observed only in B16ovaRevC3 cells after death-switch induction, accompanied by significantly increased 18F-ICMT-11 (p < 0.001) and 18F-ML-10 (p < 0.05) and decreased 18F-FDG (p < 0.001) uptake compared with controls. B16ova and B16ovaRevC3 tumours had similar growth in vivo; however, B16ovaRevC3 growth was significantly reduced with death-switch induction (p < 0.01). Biodistribution studies showed significantly increased 18F-ICMT-11 tumour uptake following death-switch induction (p < 0.01), but not for 18F-ML-10. Tumour uptake of 18F-ICMT-11 was higher than that of 18F-ML-10 after death-switch induction. PET imaging studies showed that 18F-ICMT-11 can be used to detect apoptosis after death-switch induction, which was accompanied by significantly increased expression of cleaved caspase-3. 18F-FDG signal decreased in tumours after death-switch induction. CONCLUSIONS: We demonstrate that 18F-ICMT-11 can be used to detect caspase-3 activation in a death-switch tumour model, independent of the confounding effects of cancer therapeutics, thus confirming its specificity and supporting the development of this radiotracer for clinical use to monitor tumour apoptosis and therapy response.

20.
Nat Rev Urol ; 15(4): 251-259, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29089607

RESUMO

An urgent need exists to improve the outcomes of patients with muscle-invasive bladder cancer (MIBC), and especially of those with metastatic disease. Treatments that enhance antitumour immune responses - such as immune-checkpoint inhibition - provide an opportunity to do this. Despite initial success, durable response rates in patients with advanced-stage MIBC treated with novel inhibitory antibodies targeting programmed cell death protein 1 (PD-1) or its endogenous ligand programmed cell death 1 ligand 1 (PD-L1) remain low. Radiotherapy is part of the management of bladder cancer in many patients. Evidence that radiotherapy has immunogenic properties is now available, but radiotherapy-induced immune responses are often negated by immunosuppression within the tumour microenvironment. Anti-PD-1 or anti-PD-L1 antibodies might enhance radiotherapy-induced antitumour immunity. This effect has been demonstrated in preclinical models of bladder cancer, and clinical trials involving this approach are currently recruiting. Combination treatment strategies provide an exciting opportunity for urological oncologists to not only improve the chances of cure in patients undergoing radical treatment for MIBC, but also to increase long-term response rates in those with metastatic disease.


Assuntos
Anticorpos Antineoplásicos/imunologia , Imunidade Celular/efeitos da radiação , Receptor de Morte Celular Programada 1/imunologia , Neoplasias da Bexiga Urinária/radioterapia , Humanos , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA