Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(32): 9884-9891, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921519

RESUMO

Although oil-water separation technology via wettability-controlled membranes has emerged as a promising technology to treat oily wastewater, membrane fouling by faulents such as sludge flocs and colloids, and the consequent clogging of pores, severely degrades the efficiency of filtration systems. One of the main promotors of fouling by faulents is oil fouling, which is also a form of fouling itself. Despite considerable practical and academic interest in the analysis of oil-fouled membranes, direct visualization of the entire process of oil infiltration into hydrophilic membranes is still preliminary owing to (i) the similar optical contrast and physical density between oil and water, (ii) the low penetration depth of imaging methods, and (iii) the lack of 3D segmentation capability. In this study, microcomputed X-ray tomography using tunable synchrotron radiation provided direct high-speed 3D visualization of the microscale dynamics of the oil infiltration of a prewetted hydrophilic filter membrane over time. Direct visualization of the interfacial dynamics of oil infiltration opens a window into the complex liquid (water/oil)-gas-solid interface and thus helps furnish an in-depth understanding of oil fouling in the prewetted membrane.


Assuntos
Purificação da Água , Membranas Artificiais , Óleos , Síncrotrons , Purificação da Água/métodos , Microtomografia por Raio-X
2.
Langmuir ; 38(18): 5759-5764, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35482441

RESUMO

Digital microfluidics (DMF) has garnered considerable interest as a straightforward, rapid, and programmable technique for controlling microdroplets in various biological, chemical, and medicinal research disciplines. This study details the construction of compact and low-cost 3D DMF platforms with programmable contact charge electrophoresis (CCEP) actuations by employing electrode arrays composed of a small commercial pin socket and a 3D-printed housing. We demonstrate basic 3D droplet manipulation on the platform, including horizontal and vertical transport via lifting and climbing techniques, and droplet merging. Furthermore, phenolphthalein reaction and precipitation process are evaluated using the proposed 3D DMF manipulations as a proof of concept for chemical reaction-based analysis and synthesis. The threshold voltage (or electrical field) and maximum vertical transport velocity are quantified as a function of applied voltage and electrode distance to determine the CCEP actuation conditions for 3D droplet manipulations. The ease of manufacturing and flexibility of the proposed 3D DMF platform may provide an effective technique for programmable 3D manipulation of droplets in biochemical and medical applications, such as biochemical analysis and medical diagnostics.


Assuntos
Eletricidade , Microfluídica , Eletrodos , Eletroforese
3.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956891

RESUMO

In this work, the suppression of tyrosinase-related genes, including an improvement in UV absorption effects of bioconverted CS extracts (BCS), was investigated to improve the skin-whitening effect. Total polyphenols and total flavonoids, which are bioactive components, increased 2.6- and 5.4-times in bioconversion using Lactiplantibacillus plantarum SM4, respectively, as compared to ultrasound-assisted extracts (UCS). The effect of BCS on radical scavenging activity, UV-A absorption, and tyrosinase activity inhibition, contributing to skin-whitening, were 1.3-, 1.2-, and 1.2-times higher than those of UCS, respectively. The main component identified in high-performance liquid chromatography (HPLC) was gallic acid in both UCS and BCS, which increased by 2.9-times following bioconversion. The gene expression of tyrosinase-related proteins, including TRP-1 and TRP-2 genes, was studied to confirm the suppression of melanin synthesis by BCS in order to identify the skin-whitening mechanism, and BCS decreased both genes' expression by 1.7- and 1.6-times, demonstrating that BCS effectively suppressed melanin synthesis. These findings imply that the chestnut inner shell can be employed as a cosmetic material by simultaneously inhibiting melanogenesis and enhancing UV-A absorption through bioconversion using L. plantarum SM4.


Assuntos
Oxirredutases Intramoleculares , Lactobacillus plantarum , Oxirredutases , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Expressão Gênica , Oxirredutases Intramoleculares/genética , Melaninas/biossíntese , Oxirredutases/genética , Extratos Vegetais/metabolismo , Raios Ultravioleta
4.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922050

RESUMO

The aim of this study was to remove 5-hydroxymethyl furfural (5-HMF) and furfural, known as fermentation inhibitors, in acid pretreated hydrolysates (APH) obtained from Scenedesmus obliquus using activated carbon. Microwave-assisted pretreatment was used to produce APH containing glucose, xylose, and fermentation inhibitors (5-HMF, furfural). The response surface methodology was applied to optimize key detoxification variables such as temperature (16.5-58.5 °C), time (0.5-5.5 h), and solid-liquid (S-L) ratio of activated carbon (0.6-7.4 w/v%). Three variables showed significant effects on the removal of fermentation inhibitors. The optimum detoxification conditions with the maximum removal of fermentation inhibitors and the minimum loss of sugars (glucose and xylose) were as follows: temperature of 36.6 °C, extraction time of 3.86 h, and S-L ratio of 3.3 w/v%. Under these conditions, removal of 5-HMF, furfural, and sugars were 71.6, 83.1, and 2.44%, respectively, which agreed closely with the predicted values. When the APH and detoxified APH were used for ethanol fermentation by S. cerevisiae, the ethanol produced was 38.5% and 84.5% of the theoretical yields, respectively, which confirmed that detoxification using activated carbon was effective in removing fermentation inhibitors and increasing fermentation yield without significant removal of fermentable sugars.


Assuntos
Produtos Biológicos/farmacologia , Fermentação/efeitos dos fármacos , Desintoxicação Metabólica Fase I , Microalgas/química , Produtos Biológicos/química , Celulose/química , Etanol/metabolismo , Hidrólise , Lignina/química , Microalgas/metabolismo , Açúcares/metabolismo , Temperatura
5.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885963

RESUMO

Sargassum thunbergii has been traditionally used as an edible and medicinal material in oriental countries. However, the skin-whitening and anti-wrinkling effects of S. thunbergii have not yet been investigated. This study was conducted to establish optimal extraction conditions for the production of bioactive compounds with antioxidant activity as well as skin-whitening and anti-wrinkle effects using ultrasound-assisted extraction (UAE) in S. thunbergii. The extraction time (5.30~18.7 min), extraction temperature (22.4~79.6 °C), and ethanol concentration (0.0~99.5%), which are the main variables of the UAE, were optimized using a central composite design. Quadratic regression equations were derived based on experimental data and showed a high coefficient of determination (R2 > 0.85), demonstrating suitability for prediction. The optimal UAE condition for maximizing all dependent variables, including radical scavenging activity (RSA), tyrosinase inhibitory activity (TIA), and collagenase inhibitory activity (CIA), was identified as an extraction time of 12.0 min, an extraction temperature of 65.2 °C, and ethanol of 53.5%. Under these conditions, the RSA, TIA, and CIA of S. thunbergii extract were 86.5%, 88.3%, and 91.4%, respectively. We also confirmed S. thunbergii extract had inhibitory effects on the mRNA expression of tyrosinase-related protein-1, matrix metalloproteinase-1, and matrix metalloproteinase-9, which are the main genes of melanin synthesis and collagen hydrolysis. Liquid chromatography-tandem mass spectrometry was used to identify the main phenolic compounds in S. thunbergii extract, and caffeic acid was identified as a major peak, demonstrating that high value-added ingredients with skin-whitening and anti-wrinkling effects can be produced from S. thunbergii and used for developing cosmetic materials.


Assuntos
Antioxidantes/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Oxirredutases/antagonistas & inibidores , Sargassum/química , Envelhecimento da Pele/efeitos dos fármacos , Animais , Antioxidantes/química , Linhagem Celular Tumoral , Cosméticos/química , Cosméticos/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Camundongos
6.
Langmuir ; 36(35): 10548-10554, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787016

RESUMO

Despite considerable academical and practical interests on separation of water-in-oil emulsion via special wettable membranes, fundamental understanding on microscale dynamics of water droplets on under-oil-hydrophilic membranes (UOHMs) at early stages during separation is still very preliminary due to temporal and spatial resolution of existing visualization techniques. To this end, we here succeed in a direct microscopic visualization of separation processes of water droplets on the UOHMs by employing a high-speed, two-dimensional synchrotron white-beam X-ray microimaging technique. During the separation of water-in-oil emulsion, microscale dynamic behaviors of water droplets on hydrophilic membrane surfaces immersed in the different oil media (i.e., hexane, kerosene, and light and heavy mineral oils) and oil films between water droplets and membrane surfaces are visualized and analyzed.

7.
Langmuir ; 35(10): 3607-3614, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30776243

RESUMO

In this study, the existing knowledge on the wetting criterion, that is, the intrinsic contact angle, for distinguishing between hydrophilic and hydrophobic textured surfaces is verified experimentally. A precise apparent contact angle is measured on micro-, nano-, and micro-/nanotextured surfaces to quantitatively define the surface-wetting conditions. In particular, X-ray tomography is introduced to measure precise geometric morphologies of nano- and micro-/nanotextured surfaces, and the wetting state of the textured surfaces is clearly visualized using synchrotron X-ray imaging. By comparing previous theoretical models and experimental results, it is verified that the intrinsic contact angle for distinguishing between hydrophilic and hydrophobic textured surfaces should be corrected from 90° to 43°. In addition, nonwetting phenomena in the region of the intrinsic contact angle between 43° and 90° are discussed.

8.
Langmuir ; 35(19): 6460-6467, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31017797

RESUMO

Despite considerable research interest due to omnipresent and practical importance of interfacial phenomena (e.g., wetting and dewetting) on nanotextured surfaces in the academic and industrial fields, direct visualization of the behavior and shapes of liquid-vapor interfaces between nanoscale structures remains an arduous task because of the resolution limitations of visualization techniques. In this study, we succeeded in a first-hand visualization of the behavior and shapes of the liquid-vapor interfaces of a water droplet between nanometer-scale pillar during evaporation by introducing a synchrotron X-ray imaging technique with spatially high resolution (40 nm/a pixel). On the basis of the visualization data, we intensively analyzed and discussed the spreading and evaporation phenomena of a liquid droplet on hydrophilic nanotextured surfaces.

9.
Langmuir ; 31(51): 13718-24, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26641954

RESUMO

Enhancement of response speed (or reduction of response time) is crucial for the commercialization of devices based on electrowetting (EW), such as liquid lenses and reflective displays, and presents one of the main challenges in EW research studies. We demonstrate here that an overdrive EW actuation gives rise to a faster rise of a liquid column between parallel electrodes, compared to a DC EW actuation. Here, DC actuation is actually a simple applied step function, and overdrive is an applied step followed by reduction to a lower voltage. Transient behaviors and response time (i.e., the time required to reach the equilibrium height) of the rising liquid column are explored under different DC and overdrive EW actuations. When the liquid column rises up to a target height by means of an overdrive EW, the response time is reduced to as low as 1/6 of the response time using DC EW. We develop a theoretical model to simulate the EW-driven capillary rise by combining the kinetic equation of capillary flow (i.e., Lucas-Washburn equation) and the dynamic contact angle model considering contact line friction, contact angle hysteresis, contact angle saturation, and the EW effect. This theoretical model accurately predicts the outcome to within a ± 5% error in regard to the rising behaviors of the liquid column with a low viscosity, under both DC EW and overdrive actuation conditions, except for the early stage (

10.
Langmuir ; 30(26): 7710-5, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24932677

RESUMO

Flow patterns inside a droplet of diluted aqueous NaCl solution confined by two flat substrates under natural evaporation were investigated both experimentally and numerically. We focused on natural convection-driven flows inside confined droplets at high Rayleigh numbers (i.e., the ratio of buoyancy to diffusion, Ra), where the convection of solutes is strongly dominant, compared to diffusion. The evaporated water at the free surface of the droplet builds up a concentration gradient inside the solution, which induces the Rayleigh convection flow. Three-dimensional trajectories of tracer particles in the droplet were tracked, and axisymmetric flow motions induced by the Rayleigh convection were experimentally measured by using a digital in-line holographic microscopy technique. In addition, the effects of the confined droplet's aspect ratio and the liquid's molar concentration on the evaporation-induced flows were investigated. The convection velocity is found to be increased as molar concentration increases, because Rayleigh convection becomes significant at high the molar concentration is high (i.e. high Ra). Our numerical simulation based on the Boussinesq approximation fairly well predicted the velocity profiles of evaporating confined droplets at low concentrations. Consequently, evaporation kinetics inside the confined droplets can be controlled with varying droplet's aspect ratio and the liquid's molar concentration, which provides helpful information for the design of biochemical microplating with limited resources and for tuning self-assembly micro/nanoparticle clusters.

11.
Langmuir ; 30(7): 1805-11, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24490590

RESUMO

Detachment of droplets from solid surfaces is a basic and crucial process in practical applications such as heat transfer and digital microfluidics. In this study, electrowetting actuations with square pulse signals are employed to detach droplets from a hydrophobic surface. The threshold voltage for droplet detachment is obtained both experimentally and theoretically to find that it is almost constant for various droplet volumes ranging from 0.4 to 10 µL. It is also found that droplets can be detached more easily when the width of applied pulse is well-matched to the spreading time (i.e., the time to reach the maximum spread diameter). When the droplet is actuated by a double square pulse, the threshold voltage is reduced by ∼20% from that for a single square pulse actuation. Finally, by introducing an interdigitated electrode system, it is demonstrated that droplets can be detached from the solid bottom surface without using a top needle electrode.

12.
ACS Appl Mater Interfaces ; 16(35): 46044-46052, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39103250

RESUMO

Lipid nanoparticles (LNPs) are gaining recognition as potentially effective carriers for delivery of therapeutic agents, including nucleic acids (DNA and RNA), for the prevention and treatment of various diseases. Much effort has been devoted to the implementation of microfluidic techniques for the production of monodisperse and stable LNPs and the improvement of encapsulation efficiency. Here, we developed three-dimensional (3D)-printed ring micromixers for the production of size-controllable and monodispersed LNPs with a high mRNA delivery efficiency. The effects of flow rate and ring shape asymmetry on the mixing performance were initially examined. Furthermore, the physicochemical properties (such as hydrodynamic diameter, polydispersity, and encapsulation efficiency) of the generated LNPs were quantified as a function of these physical parameters via biochemical analysis and cryo-electron microscopy imaging. With a high production rate of 68 mL/min, our 3D-printed ring micromixers can be used to manufacture LNPs with diameters less than 90 nm, low polydispersity (<0.2), and high mRNA encapsulation efficiency (>91%). Despite the simplicity of the ring-shaped mixer structure, we can produce mRNA-loaded LNPs with exceptional quality and high throughput, outperforming costly commercial micromixers.


Assuntos
Nanopartículas , Tamanho da Partícula , Impressão Tridimensional , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nanopartículas/química , Lipídeos/química , Humanos , Lipossomos
13.
Langmuir ; 29(29): 9118-25, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23799243

RESUMO

This study investigates the effects of drop size and viscosity on spreading dynamics, including response time, maximum velocity, and spreading pattern transition, in response to various DC voltages, based on both experiment and theoretical modeling. It is experimentally found that both switching time (i.e., time to reach maximum wetted radius) and settling time (i.e., time to reach equilibrium radius) are proportional to 1.5th power of the effective base radius. It is also found that the maximum velocity is slightly dependent on drop size but linearly proportional to the electrowetting number. The viscosity effect on drop spreading is investigated by observing spreading patterns with respect to applied voltages, and the critical viscosity at which a spreading pattern changes from under- to overdamped response is obtained. Theoretical models with contact angle hysteresis predict the spreading dynamics of drops with low and high viscosities fairly well. By fitting the theoretical models to experimental results, we obtain the friction coefficient, which is nearly proportional to 0.6th power of viscosity and is rarely influenced by applied voltage and drop size. Finally, we find that drop viscosity has a weak effect on maximum velocity but not a clear one on contact line friction.

14.
Micromachines (Basel) ; 15(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258180

RESUMO

In recent times, the utilization of three-dimensional (3D) printing technology, particularly a variant using digital light processing (DLP), has gained increasing fascination in the realm of microfluidic research because it has proven advantageous and expedient for constructing microscale 3D structures. The surface wetting characteristics (e.g., contact angle and contact angle hysteresis) of 3D-printed microstructures are crucial factors influencing the operational effectiveness of 3D-printed microfluidic devices. Therefore, this study systematically examines the surface wetting characteristics of DLP-based 3D printing objects, focusing on various printing conditions such as lamination (or layer) thickness and direction. We preferentially examine the impact of lamination thickness on the surface roughness of 3D-printed structures through a quantitative assessment using a confocal laser scanning microscope. The influence of lamination thicknesses and lamination direction on the contact angle and contact angle hysteresis of both aqueous and oil droplets on the surfaces of 3D-printed outputs is then quantified. Finally, the performance of a DLP 3D-printed microfluidic device under various printing conditions is assessed. Current research indicates a connection between printing parameters, surface roughness, wetting properties, and capillary movement in 3D-printed microchannels. This correlation will greatly aid in the progress of microfluidic devices produced using DLP-based 3D printing technology.

15.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374410

RESUMO

This study examines the impacts of copper and boron in parts per million (ppm) on the microstructure and mechanical properties of spheroidal graphite cast iron (SCI). Boron's inclusion increases the ferrite content whereas copper augments the stability of pearlite. The interaction between the two significantly influences the ferrite content. Differential scanning calorimetry (DSC) analysis indicates that boron alters the enthalpy change of the α + Fe3C → γ conversion and the α → γ conversion. Scanning electron microscope (SEM) analysis confirms the locations of copper and boron. Mechanical property assessments using a universal testing machine show that the inclusion of boron and copper decreases the tensile strength and yield strength of SCI, but simultaneously enhances elongation. Additionally, in SCI production, the utilization of copper-bearing scrap and trace amounts of boron-containing scrap metal, especially in the casting of ferritic nodular cast iron, offers potential for resource recycling. This highlights the importance of resource conservation and recycling in advancing sustainable manufacturing practices. These findings provide critical insights into the effects of boron and copper on SCI's behavior, contributing to the design and development of high-performance SCI materials.

16.
Langmuir ; 28(15): 6307-12, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22439770

RESUMO

When placed on an inclined solid plane, drops often stick to the solid surface due to pinning forces caused by contact angle hysteresis. When the drop size or the plane's incline angle is small, the drop is difficult to slide due to a decrease in gravitational force. Here we demonstrate that small drops (0.4-9 µL) on a slightly inclined plane (~12°, Teflon and parylene-C surface) can be mobilized through patterned electrodes by applying low-frequency ac electrowetting under 400 Hz (110-180 V(rms)), which has a mechanism different from that of the high-frequency ac method that induces sliding by reducing contact angle hysteresis. We attribute the sliding motion of our method to a combination of contact angle hysteresis and interfacial oscillation driven by ac electrowetting instead of the minimization of contact angle hysteresis at a high frequency. We investigated the effects of ac frequency on the sliding motion and terminal sliding of drops; the terminal sliding velocity is greatest at resonance frequency. Varying the electrowetting number (0.21-0.56) at a fixed frequency (40 Hz) for 5 µL drops, we found an empirical relationship between the electrowetting number and the terminal sliding velocity. Using the relationship between the drop size and ac frequency, we can selectively slide drops of a specific size or merge two drops along an inclined plane. This simple method will help with constructing microfluidic platforms with sorting, merging, transporting, and mixing of drops without a programmable control of electrical signals. Also, this method has a potential in heat transfer applications because heat removal capacity can be enhanced significantly through drop oscillation.

17.
Micromachines (Basel) ; 13(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35457899

RESUMO

Contact charge electrophoresis (CCEP) is an electrically controllable manipulation technique of conductive droplets and particles by charging and discharging when in contact with the electrode. Given its straightforward operation mechanism, low cost, and ease of system construction, it has gained traction as a versatile and potential strategy for the realistic establishment of lab-on-a-chip (LOC) in various engineering applications. We present a CCEP-based digital microfluidics (DMF) platform with two parallel electrode modules comprising assembled conventional pin header sockets, allowing for efficient mixing through horizontal and vertical shaking via droplet reciprocating motions. The temporal chromic change caused by the chemical reaction between the pH indicator and base solutions within the shaking droplets is quantitatively analyzed under various CCEP actuation conditions to evaluate the mixing performance in shaking droplets by vertical and horizontal reciprocating motions on the DMF platform. Furthermore, mixing flow patterns within shaking droplets are successfully visualized by a high-speed camera system. The suggested techniques can mix samples and reagents rapidly and efficiently in droplet-based microreactors for DMF applications, such as biochemical analysis and medical diagnostics.

18.
Rev Sci Instrum ; 90(9): 095004, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575261

RESUMO

Despite the considerable research interest due to practical importance of pervasive wireless sensing systems in a wide range of engineering fields, power management remains an arduous task for further development of pervasive wireless sensing systems due to inherent needs for self-reliant functionality and portability during their operations. To this end, we here propose a new type of energy harvesting strategy in which an optothermally pulsating microbubble is submerged in an underwater medium. The pulsating microbubble gives rise to the periodic vibration of piezocantilevers in contact, which resultantly can produce electrical outputs. On the basis of this simple idea, mechanical power can be extracted from light energy through optothermally pulsating microbubbles in an aqueous medium and subsequently the mechanical power can be converted to electrical power for wireless devices. To elucidate physical factors affecting the performance of the proposed strategy, we thoroughly explore the effect of the intensity and frequency of the laser beam on the pulsation amplitude of optothermally pulsating bubbles and subsequent electrical outputs (e.g., electrical voltage and power). The dependence of electrical output on wetting property of piezocantilevers and electrical resistance is also established. The present work would provide a new framework for fundamental design of bubble-based microactuators as energy harvesters and microsensors in the near future.

19.
Sci Rep ; 6: 31901, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27534580

RESUMO

The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and bursting modes) as a function of flow rates, applied voltages, and gap distances between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few µL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation of colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This integrated platform will provide increased utility and flexibility in microfluidic applications because a charged droplet can be delivered toward the intended position by programmable electric control.


Assuntos
Técnicas Eletroquímicas/métodos , Campos Eletromagnéticos , Dispositivos Lab-On-A-Chip
20.
Lab Chip ; 15(3): 900-7, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25500988

RESUMO

The detachment (or removal) of droplets from a solid surface is an indispensable process in numerous practical applications which utilize digital microfluidics, including cell-based assay, chip cooling, and particle sampling. When a droplet that is fully stretched by impacting or electrowetting is released, the conversion of stored surface energy to kinetic energy can lead to the departure of the droplet from a solid surface. Here we firstly detach sessile droplets in immiscible fluids from a hydrophobic surface by electrowetting. The physical conditions for droplet detachment depend on droplet volume, viscosity of ambient fluid, and applied voltage. Their critical conditions are determined by exploring the retracting dynamics for a wide range of driving voltages and physical properties of fluids. The relationships between physical parameters and dynamic characteristics of retracting and jumping droplets, such as contact time and jumping height, are also established. The threshold voltage for droplet detachment in oil with high viscosity is largely reduced (~70%) by electrowetting actuations with a square pulse. To examine the applicability of three-dimensional digital microfluidic (3D-DMF) platforms to biological applications such as cell culture and cell-based assays, we demonstrate the detachment of droplets containing a mixture of human umbilical vein endothelial cells (HUVECs) and collagen (concentration of 4 × 10(4) cells mL(-1)) in silicone oil with a viscosity of 0.65 cSt. Furthermore, to complement the technical limitations due to the use of a needle electrode and to demonstrate the applicability of the 3D-DMF platform with patterned electrodes to chemical analysis and synthesis, we examine the transport, merging, mixing, and detachment of droplets with different pH values on the platform. Finally, by using DC and AC electrowetting actuations, we demonstrate the detachment of oil droplets with a very low contact angle (<~13°) in water on a hydrophobic surface.


Assuntos
Eletroumectação , Óleos de Silicone/química , Células Cultivadas , Colágeno/química , Eletroumectação/instrumentação , Células Endoteliais da Veia Umbilical Humana/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA