Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0225323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38440988

RESUMO

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos , Areia , Rios , Águas Residuárias
2.
Environ Sci Technol ; 58(5): 2360-2372, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261758

RESUMO

Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.


Assuntos
Ácidos Nucleicos , Anaerobiose , Citometria de Fluxo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , RNA Ribossômico 16S/genética , Reatores Biológicos , Eliminação de Resíduos Líquidos , Metano
3.
Acta Pharmacol Sin ; 45(1): 180-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644132

RESUMO

Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Moléculas de Adesão Celular , Progressão da Doença , Linhagem Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493685

RESUMO

Anaerobic membrane bioreactor (AnMBR) for wastewater treatment has attracted much interest due to its efficacy in providing high-quality effluent with minimal energy costs. However, membrane biofouling represents the main bottleneck for AnMBR because it diminishes flux and necessitates frequent replacement of membranes. In this study, we assessed the feasibility of combining bacteriophages and UV-C irradiation to provide a chemical-free approach to remove biofoulants on the membrane. The combination of bacteriophage and UV-C resulted in better log cells removal and ca. 2× higher extracellular polymeric substance (EPS) concentration reduction in mature biofoulants compared to either UV-C or bacteriophage alone. The cleaning mechanism behind this combined approach is by 1) reducing the relative abundance of Acinetobacter spp. and selected bacteria (e.g., Paludibacter, Pseudomonas, Cloacibacterium, and gram-positive Firmicutes) associated with the membrane biofilm and 2) forming cavities in the biofilm to maintain water flux through the membrane. When the combined treatment was further compared with the common chemical cleaning procedure, a similar reduction on the cell numbers was observed (1.4 log). However, the combined treatment was less effective in removing EPS compared with chemical cleaning. These results suggest that the combination of UV-C and bacteriophage have an additive effect in biofouling reduction, representing a potential chemical-free method to remove reversible biofoulants on membrane fitted to an AnMBR.


Assuntos
Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Membranas/química , Raios Ultravioleta , Purificação da Água/métodos , Anaerobiose , Bactérias/virologia , Biofilmes/efeitos da radiação , Membranas/efeitos da radiação , Membranas/virologia , Águas Residuárias/química
5.
Ecotoxicol Environ Saf ; 273: 116156, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412631

RESUMO

Understanding the developmental characteristics of microbial communities in biofilms is crucial for designing targeted functional microbial enhancements for the remediation of complex contamination scenarios. The strong prioritization effect of microorganisms confers the ability to colonize strains that arrive first dominantly. In this study, the auto-aggregating denitrifying bacterial Pseudomonas stutzeri strain YC-34, which has both nitrogen and chromium removal characteristics, was used as a biological material to form a stable biofilm system based on the principle of dominant colonization and biofortification. The effect of the biofilm system on nitrogen and chromium removal was characterized by measuring the changes in the quality of influent and effluent water. The pattern of biofilm changes was analyzed by measuring biofilm content and thickness and characterizing extracellular polymer substances (EPS). Further analysis of the biofilm microbiota characteristics and potential functions revealed the mechanism of strain YC-34 biofortified biofilm. The results revealed that the biofilm system formed could achieve 90.56% nitrate-nitrogen removal with an average initial nitrate-nitrogen concentration of 51.9 mg/L and 40% chromium removal with an average initial hexavalent chromium Cr(VI) concentration of 7.12 mg/L. The biofilm properties of the system were comparatively analyzed during the biofilm formation period, the fluctuation period of Cr(VI)-stressed water quality, and the stabilization period of Cr(VI)-stressed water quality. The biofilm system may be able to increase the structure of hydrogen bonds, the type of protein secondary structure, and the abundance of amino acid-like components in the EPS, which may confer biofilm tolerance to Cr(VI) stress and allow the system to maintain a stable biofilm structure. Furthermore, microbial characterization indicated an increase in microbial diversity in the face of chromium stress, with an increase in the abundance of nitrogen removal-associated functional microbiota and an increasing trend in the abundance of nitrogen transfer pathways. These results demonstrate that the biofilm system is stable in nitrogen and chromium removal. This bioaugmentation method may provide a new way for the remediation of heavy metal-polluted water bodies and also provides theoretical and application parameters for the popularization and application of biofilm systems.


Assuntos
Desnitrificação , Nitratos , Nitratos/metabolismo , Nitrogênio/metabolismo , Cromo/metabolismo , Biofilmes , Bactérias/metabolismo
6.
Proteomics ; 23(20): e2300191, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541654

RESUMO

Metaproteomics can be used to study functionally active biofilm-based bacterial populations in reclaimed water distribution systems, which in turn result in bacterial regrowth that impacts the water quality. However, existing protein extraction methods have differences in their protein recovery and have not been evaluated for their efficacies in reclaimed water biofilm samples. In this study, we first evaluated six different protein extraction methods with diverse chemical and physical properties on a mixture of bacterial cell culture. Based on a weighting scores-based evaluation, the extraction protocols in order of decreasing performance are listed as B-PER > RIPA > PreOmics > SDS > AllPrep > Urea. The highest four optimal methods on cell culture were further tested against treated wastewater non-chlorinated and chlorinated effluent biofilms. In terms of protein yield, our findings showed that RIPA performed the best; however, the highest number of proteins were extracted from SDS and PreOmics. Furthermore, SDS and PreOmics worked best to rupture gram-positive and gram-negative bacterial cell walls. Considering the five evaluation factors, PreOmics obtained highest weighted score, indicating its potential effectiveness in extracting proteins from biofilms. This study provides the first insight into evaluating protein extraction methods to facilitate metaproteomics for complex reclaimed water matrices.

7.
Environ Microbiol ; 25(5): 1007-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36567447

RESUMO

Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 µm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.


Assuntos
Prochlorococcus , Oceano Índico , Prochlorococcus/genética , Temperatura , Carbono , Tamanho Celular
8.
Environ Sci Technol ; 57(16): 6712-6722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37038903

RESUMO

This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Desnitrificação , Nitrogênio , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução
9.
Environ Sci Technol ; 57(35): 13148-13160, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37565447

RESUMO

Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Feminino , Masculino , Animais , Bioacumulação , Lagos , Distribuição Tecidual , Baías , Fluorocarbonos/análise , China , Poluentes Químicos da Água/análise , Bufonidae , Monitoramento Ambiental
10.
Environ Res ; 234: 116591, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423367

RESUMO

Denitrification is critical for removing nitrate from wastewater, but it typically requires large amounts of organic carbon, which can lead to high operating costs and secondary environmental pollution. To address this issue, this study proposes a novel method to reduce the demand for organic carbon in denitrification. In this study, a new denitrifier, Pseudomonas hunanensis strain PAD-1, was obtained with properties for high efficiency nitrogen removal and trace N2O emission. It was also used to explore the feasibility of pyrite-enhanced denitrification to reduce organic carbon demand. The results showed that pyrite significantly improved the heterotrophic denitrification of strain PAD-1, and optimal addition amount was 0.8-1.6 g/L. The strengthening effect of pyrite was positively correlated with carbon to nitrogen ratio, and it could effectively reduce demand for organic carbon sources and enhance carbon metabolism of strain PAD-1. Meanwhile, the pyrite significantly up-regulated electron transport system activity (ETSA) of strain PAD-1 by 80%, nitrate reductase activity by 16%, Complex III activity by 28%, and napA expression by 5.21 times. Overall, the addition of pyrite presents a new avenue for reducing carbon source demand and improving the nitrate harmless rate in the nitrogen removal process.


Assuntos
Desnitrificação , Nitratos , Aerobiose , Nitrogênio/metabolismo , Carbono , Reatores Biológicos
11.
Environ Res ; 235: 116602, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429397

RESUMO

Finding effective methods for simultaneous removal of eutrophic nutrients and heavy metals has attracted increasing concerns for the environmental remediation. Herein, a novel auto-aggregating aerobic denitrifying strain (Aeromonas veronii YL-41) was isolated with capacities for copper tolerance and biosorption. The denitrification efficiency and nitrogen removal pathway of the strain were investigated by nitrogen balance analysis and amplification of key denitrification functional genes. Moreover, the changes in the auto-aggregation properties of the strain caused by extracellular polymeric substances (EPS) production were focused on. The biosorption capacity and mechanisms of copper tolerance during denitrification were further explored by measuring changes in copper tolerance and adsorption indices, as well as by variations in extracellular functional groups. The strain showed extremely strong total nitrogen removal ability, with 67.5%, 82.08% and 78.48% of total nitrogen removal when NH4+-N, NO2--N, and NO3--N were used as the only initial nitrogen source, respectively. The successful amplification of napA, nirK, norR, and nosZ genes further demonstrated that the strain accomplished nitrate removal through a complete aerobic denitrification pathway. The production of protein-rich EPS of up to 23.31 mg/g and an auto-aggregation index of up to 76.42% may confer a strong biofilm-forming potential to the strain. Under the stress of 20 mg/L copper ions, the removal of nitrate-nitrogen was still as high as 71.4%. In addition, the strain could achieve an efficient removal of 96.9% of copper ions at an initial concentration of 80 mg/L. Scanning electron microscopy and deconvolution analysis of characteristic peaks confirmed that the strains encapsulate heavy metals by secreting EPS and, meanwhile, form strong hydrogen bonding structures to enhance intermolecular forces to resist copper ion stress. This study provides an innovative and effective biological approach for the synergistic bioaugmentation removal of eutrophic substances and heavy metals from aquatic environments.


Assuntos
Nitratos , Águas Residuárias , Desnitrificação , Cobre , Nitrogênio/metabolismo , Aerobiose , Bactérias/metabolismo , Compostos Orgânicos
12.
Environ Sci Technol ; 56(21): 15007-15018, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918059

RESUMO

Since the COVID-19 pandemic started, there has been much speculation about how COVID-19 and antimicrobial resistance may be interconnected. In this study, untreated wastewater was sampled from Hospital A designated to treat COVID-19 patients during the first wave of the COVID-19 pandemic alongside Hospital B that did not receive any COVID-19 patients. Metagenomics was used to determine the relative abundance and mobile potential of antibiotic resistant genes (ARGs), prior to determining the correlation of ARGs with time/incidence of COVID-19. Our findings showed that ARGs resistant to macrolides, sulfonamides, and tetracyclines were positively correlated with time in Hospital A but not in Hospital B. Likewise, minor extended spectrum beta-lactamases (ESBLs) and carbapenemases of classes B and D were positively correlated with time, suggesting the selection of rare and/or carbapenem-resistant genes in Hospital A. Non-carbapenemase blaVEB also positively correlated with both time and intI1 and was copresent with other ARGs including carbapenem-resistant genes in 6 metagenome-assembled genomes (MAGs). This study highlighted concerns related to the dissemination of antimicrobial resistance (AMR) during the COVID-19 pandemic that may arise from antibiotic use and untreated hospital wastewater.


Assuntos
Antibacterianos , COVID-19 , Humanos , Antibacterianos/farmacologia , Águas Residuárias , Pandemias , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Hospitais
13.
Environ Sci Technol ; 55(24): 16283-16298, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34881878

RESUMO

Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.


Assuntos
Vírus , Purificação da Água , Desinfecção , Humanos , Peróxido de Hidrogênio , Raios Ultravioleta , Inativação de Vírus , Água
14.
Environ Res ; 199: 111272, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989627

RESUMO

Biofouling impedes the performance of anaerobic membrane bioreactors (AnMBR). Two reactors, one as an up-flow attachment-growth AnMBR (UA-AnMBR) configuration, and the other, as a continuously stirred AnMBR (CS-AnMBR) were evaluated for differences in membrane fouling rate. TMP increment in UA-AnMBR was slower than CS-AnMBR, although both reactors had similar COD removal efficiency (ca. > 96%). Slower fouling rate for UA-AnMBR was related to lower total and viable cells, and thereby microbial activity compared to that in CS-AnMBR. Acinetobacter and Methanobacterium that played keystone roles in anaerobic biofilm formation were not consistently prevalent on the membranes connected to UA-AnMBR. This is in contrast to both Acinetobacter and Methanobacterium consistently prevalent on the membranes connected to CS-AnMBR. The findings suggest that UA-AnMBR can alleviate membrane biofouling through changes in microbial activity and profile dynamics, and would be a suitable reactor configuration to adopt to achieve an efficient AnMBR for municipal wastewater treatment.


Assuntos
Incrustação Biológica , Purificação da Água , Anaerobiose , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
Environ Res ; 198: 110479, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33212130

RESUMO

Effluent from anaerobic membrane bioreactor (AnMBR) contains ammonia and would require post-polishing treatment before it can be disinfected by chlorine. However, additional post-treatment steps to remove nutrients offset the energetic benefits derived from anaerobic fermentation. The use of chlorine or ozone also promotes concerns associated with disinfection byproducts. This study evaluates UV/H2O2 as a potential strategy suited for the removal of pharmaceutical compounds as well as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from AnMBR effluent. Our findings indicate that 10 mg/L H2O2 and 61.5 mJ/cm2 of UV fluence are able to achieve a 4-log removal of both Escherichia coli PI7 and Klebsiella pneumoniae L7. However, a higher fluence of 311 mJ/cm2 with the same amount of H2O2 would be required to achieve >90% removal of atenolol, carbamazepine and estrone. The removal of the pharmaceutical compounds was driven by the hydroxyl radicals generated from H2O2, while UV exposure governed the inactivation of ARB and ARGs. UV/H2O2 increased overall mutagenicity of the treated wastewater matrix but did not result in any changes to the natural transformation rates. Instead, UV significantly reduced natural transformation rates by means of DNA damage. Overall, UV/H2O2 could be the ideal final disinfection strategy for AnMBR effluent without requiring additional post-treatment prior disinfection.


Assuntos
Purificação da Água , Anaerobiose , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Reatores Biológicos , Desinfecção , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Águas Residuárias
16.
Environ Res ; 195: 110748, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465345

RESUMO

There is increasing interest in wastewater-based epidemiology (WBE) of SARS-CoV-2 RNA to serve as an early warning system for a community. Despite successful detection of SARS-CoV-2 RNA in wastewaters sampled from multiple locations, there is still no clear idea on the minimal number of cases in a community that are associated with a positive detection of the virus in wastewater. To address this knowledge gap, we sampled wastewaters from a septic tank (n = 57) and biological activated sludge tank (n = 52) located on-site of a hospital. The hospital is providing treatment for SARS-CoV-2 infected patients, with the number of hospitalized patients per day known. It was observed that depending on which nucleocapsid gene is targeted by means of RT-qPCR, a range of 253-409 positive cases out of 10,000 persons are required prior to detecting RNA SARS-CoV-2 in wastewater. There was a weak correlation between N1 and N2 gene abundances in wastewater with the number of hospitalized cases. This correlation was however not observed for N3 gene. The frequency of detecting N1 and N2 gene in wastewater was also higher than that for N3 gene. Furthermore, nucleocapsid genes of SARS-CoV-2 were detected at lower frequency in the partially treated wastewater than in the septic tank. In particular, N1 gene abundance was associated with water quality parameters such as total organic carbon and pH. In instances of positive detection, the average abundance of N1 and N3 genes in the activated sludge tank were reduced by 50 and 70% of the levels detected in septic tank, suggesting degradation of the SARS-CoV-2 gene fragments already occurring in the early stages of the wastewater treatment process.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças , Humanos , RNA Viral/genética , Águas Residuárias
17.
Am J Emerg Med ; 50: 442-448, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34492589

RESUMO

OBJECTIVE: To evaluate effectiveness of combinational use of dexmedetomidine and ketamine (DEX-KET) for pediatric procedural sedation or premedication. METHODS: Relevant studies were identified after a literature search in electronic databases and study selection was based on precise eligibility criteria. Meta-analyses of mean differences were performed to examine differences in sedation onset and recovery times between DEX-KET and comparators. Changes from baseline in heart rate (HR), respiratory rate, oxygen saturation, and mean arterial pressure (MAP), were pooled. Meta-analyses of proportions were performed to estimate incidence of adverse events. RESULTS: 15 studies (1087 patients) were included. Onset of sedation was significantly shorter in DEX-KET than in DEX group. HR declined in DEX-KET group from start (-3.5 beats per minute (BPM) [95% CI: -5.1, -1.9]) through midpoint (-7.2 BPM [95% CI: -12.1, -2.3]) and at end of sedation (-8.7 BPM [95% CI: -13.1, -4.4]). Decrease in HR after DEX administration at start was -11.6 BPM [95% CI: -16.0, -7.1] and remained consistent afterward. There was no change in MAP during DEX-KET sedation. However, after DEX administration, MAP decreased by -6.9 [95% CI: -10.4, -3.3] at start, -7.8 [95% CI: -11.4, -4.2] at middle, and by -6.6 [95% CI: -14.4, 1.1] at end of sedation. Incidence of hypotension was 3% [95% CI: 0, 9] in DEX-KET, 7% [95% CI: 2, 14] in DEX, and 0% [95% CI: 0, 2] in KET groups. Incidence of bradycardia was 2% [95% CI: 0, 6] with DEX-KET and 12% [95% CI: 5, 20] with DEX. Incidence of oxygen desaturation was 3% [95% CI: 0, 8] in DEX-KET, 2% [95% CI: 0, 6] in DEX, 12% [95% CI: 5, 20] in KET, and 13% [95% CI: 6, 21] in PROP-KET groups. MIDA-KET sedation had 13% [95% CI: 4, 25] incidence of tachycardia. CONCLUSIONS: DEX-KET for pediatric sedation results in better sedation outcomes than DEX or KET by shortening onset of sedation and recovery while maintaining hemodynamic and respiratory stability with low incidence of adverse events. DEX sedation was associated with higher incidence of bradycardia. Higher incidence of oxygen desaturation was observed with KET and PROP-KET whereas MIDA-KET was associated with higher incidence of tachycardia.


Assuntos
Sedação Consciente , Dexmedetomidina/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Ketamina/administração & dosagem , Pré-Medicação , Criança , Combinação de Medicamentos , Humanos
18.
J Nurs Scholarsh ; 53(4): 418-427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844425

RESUMO

PURPOSE: Secondary prevention of coronary artery disease, self-management behavior, and blood pressure control are important to cardiovascular event prevention and promotion of quality of life (QOL), but they are underutilized. The purpose of this study was to investigate the effects of a self-efficacy theory-based health information technology intervention implemented through blood control and patient self-management. DESIGN: A clinical randomized waitlist-controlled trial. METHODS: The study was conducted at a medical center in Taipei, Taiwan. A total of 60 subjects were randomly assigned to either the immediate intervention (experimental) group or the waitlist control group. The primary endpoint was systolic blood pressure at 3 months; secondary end points included self-management behavior and QOL. Treatment for the immediate intervention group lasted 3 months, while the waitlist control group received routine care for the first 3 months, at which point they crossed over to the intervention arm and received the same intervention as the experimental group for another 3 months. Both groups were evaluated by questionnaires and physiological measurements at both 3 and 6 months postadmission. The results were analyzed using generalized estimating equations. RESULTS: Systolic blood pressure significantly improved for the intervention group participants at 3 months, when there was also significant improvement in self-management behavior and QOL. There was no significant or appreciable effect of time spent in the waitlist condition, with treatments in the two conditions being similarly effective. CONCLUSION: The use of a theory-based health information technology treatment compared with usual care resulted in a significant improvement in systolic blood pressure, self-management behavior, and QOL in patients with coronary artery disease. CLINICAL RELEVANCE: This treatment would be a useful strategy for clinical care of cardiovascular disease patients, improving their disease self-management. It also may help guide further digital health care strategies during the COVID-19 pandemic.


Assuntos
Doença da Artéria Coronariana/terapia , Informática Médica/métodos , Teoria Psicológica , Autogestão/psicologia , Adulto , Idoso , Pressão Sanguínea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoeficácia , Taiwan , Resultado do Tratamento , Listas de Espera
19.
Bioprocess Biosyst Eng ; 44(6): 1227-1235, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33595724

RESUMO

An aerobic denitrifying bacterium, stain LK-618, was isolated from lake sediment surface and the efficacy of inorganic nitrogen removal was tested. Stain LK-618 identified as Pseudomonas sihuiensis by 16S rRNA sequencing analysis. Trisodium citrate was found to be the ideal carbon source for this strain. When an initial nitrogen sources of approximately 50 mg/L nitrate, ammonium, or nitrite was solely selected as the nitrogen source, the nitrogen removal efficiencies were 91.4% (3.86 mg/L/h), 95.07% (2.47 mg/L/h) and 97.7% (2.41 mg/L/h), respectively. Nitrogen balance analysis revealed that 55.12% NO3--N was removed as N2. Response surface methodology (RSM) analysis demonstrated that the optimal Total Nitrogen (TN) removal ratio for strain LK-618 was under C/N ratio of 12.63, shaking speed of 52.06 rpm, temperature of 28.5 °C and pH of 6.86. In addition, strain LK-618 could tolerate NaCl concentrations up to 20 g/L, and its most efficient denitrification capacity was presented at NaCl concentrations of 0-10 g/L. Therefore, strain LK-618 has potential application on the removal of inorganic nitrogen from saline wastewater under aerobic conditions.


Assuntos
Desnitrificação , Nitrogênio/metabolismo , Pseudomonas/crescimento & desenvolvimento , Aerobiose , Biodegradação Ambiental
20.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681846

RESUMO

Phenylalanine ammonia-lyase (PAL) catalyzes the nonoxidative deamination of phenylalanine to yield trans-cinnamic acid and ammonia. Recombinant Bambusa oldhamii BoPAL1/2 proteins were immobilized onto electrospun nanofibers by dextran polyaldehyde as a cross-linking agent. A central composite design (CCD)-response surface methodology (RSM) was utilized to optimize the electrospinning parameters. Escherichia coli expressed eBoPAL2 exhibited the highest catalytic efficiency among four enzymes. The optimum conditions for fabricating nanofibers were determined as follows: flow rate of 0.10 mL/h, voltage of 13.8 kV, and distance of 13 cm. The response surface models were used to obtain the smaller the fiber diameters as well as the highest PAL activity in the enzyme immobilization. Compared with free BoPALs, immobilized BoPALs can be reused for at least 6 consecutive cycles. The remained activity of the immobilized BoPAL proteins after storage at 4 °C for 30 days were between 75 and 83%. In addition, the tolerance against denaturants of the immobilized BoPAL proteins were significantly enhanced. As a result, the dextran polyaldehyde natural cross-linking agent can effectively replace traditional chemical cross-linking agents for the immobilization of the BoPAL enzymes. The PAL/nylon 6/polyvinyl alcohol (PVA)/chitosan (CS) nanofibers made are extremely stable and are practical for industrial applications in the future.


Assuntos
Bambusa/enzimologia , Cinamatos/metabolismo , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA