Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081468

RESUMO

The iron metabolism partners Leptospirillum ferriphilum and Acidiphilium sp. were screened from industrial bioheap site. An integrated multi-stage strategy was proposed to improve chalcolite column bioleaching coupling with synergistical utilization of cellulosic waste such as acid hydrolysate of aquatic plants. L. ferriphilum was used to accelerate the initial iron metabolism, and Acidithiobacillus caldus maintained a lower pH in the middle stage, while Acidiphilium sp. greatly inhibited jarosite passivation in the later stage. Meanwhile, L. ferriphilum (38.3 %) and Acidiphilium sp. (37.0 %) dominated the middle stage, while the abundance of Acidiphilium sp. reached 63.5 % in the later stage. The ferrous, sulfate ion and biomass were improved and the transcriptional levels of some biofilm and morphology related genes were significantly up-regulated. The final Cu2+ concentration reached 325.5 mg·L-1, improved by 43.8 %. Moreover, Canonical Correlation Analysis (CCA) analysis between bioleaching performance, iron/sulfur metabolism and community verified the important role of iron metabolism partners.


Assuntos
Acidiphilium , Acidithiobacillus , Bactérias , Acidiphilium/metabolismo , Cobre/metabolismo , Oxirredução , Ferro/metabolismo , Acidithiobacillus/metabolismo
2.
Bioresour Technol ; 288: 121509, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31195363

RESUMO

The influences of reutilization of high COD leachate via recirculation strategy on methane production and dynamic of methanogen community in anaerobic digestion of Municipal Solid Waste (MSW) were revealed. With a COD concentration of 6000 mg·L-1 recirculation, the efficiency of hydrolytic acidification process was improved and alleviated the pH reduction during acidification, while the highest COD removal efficiency was achieved. The maximum methane production rate and accumulated CH4 production by the 6000 mg·L-1 group increased by 90.7% and 156.0%, respectively. Whereas the performance of the 9000 mg·L-1 group was actually below the control group. According to high-throughput sequencing, the superiority of acetotrophic Methanothrix was replaced by hydrogenotrophic Methanobacterium in the 3000- and 6000-mg·L-1 systems. Methanoculleus predominated in the 9000-mg·L-1 system, while Methanoregula, Methanolinea, and Methanospirillum suffered intensive inhibition effects. Canonical correspondence analysis verified a positive correlation between the dominant methanogens Methanobacterium and CH4 production, and a negative correlation with Methanoculleus.


Assuntos
Reatores Biológicos , Resíduos Sólidos , Anaerobiose , Metano , Methanomicrobiaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA