Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 13(12): 2956-63, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22865797

RESUMO

The properties of graphene oxide (GO) and DNA-stabilised reduced graphene-oxide (rGO) sheets as electron-transfer mediators in partially blocked electrodes are evaluated employing electrochemical impedance spectroscopy. Evidences obtained from UV/Vis, Raman and FTIR spectroscopies, as well as atomic force microscopy, confirm that the reduction of exfoliated GO single sheets by hydrazine yields partially reduced graphene oxide featuring a high defect density. Two-dimensional assemblies of GO and rGO were formed through electrostatic adsorption at Au electrodes, sequentially modified with 11-mercaptoundecanoic acid (MUA) and poly-diallyldimethylammonium chloride (PDADMAC). The MUA:PDADMAC generates a strong blocking layer to the electron-transfer reaction involving the ferri/ferrocyanide redox couple. This blocking behaviour is not significantly affected upon adsorption of GO. However, adsorption of a sub-monolayer of rGO decreases the charge-transfer resistance by more than two orders of magnitude. Analysis of cyclic voltammograms and impedance spectra suggests that electron transfer in rGO assemblies is mediated by occupied states located just below the redox Fermi energy of the probe. These findings are discussed in the context of on-going controversies regarding the electrochemical reactivity of sp(2)-carbon basal planes.

2.
Langmuir ; 27(8): 5112-8, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21405066

RESUMO

The electrochemical properties of two-dimensional assemblies of 500 nm type Ib diamond particles are investigated as a function of their surface oxidation state. High Pressure High Temperature particles are sequentially exposed to a hot strong acid bath and to H(2) plasma in order to generate oxygen (ODP) and hydrogen surface terminations (HDP). Changes in the surface composition following the chemical treatments are confirmed by FTIR. Electrophoretic mobility measurements show that the diamond particles exhibit a negative surface charge at pH above 7 independently of the surface termination. Oxidation in the acid bath and subsequent reduction in the H(2) plasma only affects about 30% of the particle surface charge. The intrinsic negative charge allows the formation of 2D assemblies by electrostatic adsorption on poly(diallyldimethylammonium chloride) (PDADMAC) modified In-doped SnO(2) electrodes (ITO). The particle number density in the assembly was controlled by the adsorption time up to a maximum coverage of ca. 40%. Cyclic voltammetry in the absence of redox species in solution show that the acid treatment effectively removes responses associated with sp(2) carbon impurities, resulting in a potential independent capacitive signal. On the other hand, HDP assemblies are characterized by a charging process at a potential above 0.1 V vs Ag/AgCl. These responses are associated with hole-injection into the valence band edge which is shifted to approximately -4.75 eV vs vacuum upon hydrogenation. Information concerning the position of the valence band edge as well as hole number density at the HDP surface as a function of the applied potential are extracted from the electrochemical analysis.


Assuntos
Diamante/química , Eletroquímica/métodos , Nanopartículas/química
3.
Chem Commun (Camb) ; 47(27): 7656-8, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21647528

RESUMO

The suitability of insulating highly crystalline diamond particles as support for Pd based electrocatalysts is explored for the first time by evaluating the electrochemical stripping of CO and oxidation of formic acid in acid solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA