Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(12): e0143208, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26636762

RESUMO

BACKGROUND: Despite the clinical benefit of whole brain radiotherapy (WBRT), patients and physicians are concerned by the long-term impact on cognitive functioning. Many studies investigating the molecular and cellular impact of WBRT have used rodent models. However, there has not been a rodent protocol comparable to the recently reported Radiation Therapy Oncology Group (RTOG) protocol for WBRT with hippocampal avoidance (HA) which is intended to spare cognitive function. The aim of this study was to develop a hippocampal-sparing WBRT protocol in Wistar rats. METHODS: The technical and clinical challenges encountered in hippocampal sparing during rat WBRT are substantial. Three key challenges were identified: hippocampal localization, treatment planning, and treatment localization. Hippocampal localization was achieved with sophisticated imaging techniques requiring deformable registration of a rat MRI atlas with a high resolution MRI followed by fusion via rigid registration to a CBCT. Treatment planning employed a Monte Carlo dose calculation in SmART-Plan and creation of 0.5 cm thick lead blocks custom-shaped to match DRR projections. Treatment localization necessitated the on-board image-guidance capability of the XRAD C225Cx micro-CT/micro-irradiator (Precision X-Ray). Treatment was accomplished with opposed lateral fields with 225 KVp X-rays at a current of 13 mA filtered through 0.3 mm of copper using a 40x40 mm square collimator and the lead blocks. A single fraction of 4 Gy was delivered (2 Gy per lateral field) with a 41 second beam on time per field at a dose rate of 304.5 cGy/min. Dosimetric verification of hippocampal sparing was performed using radiochromic film. In vivo verification of HA was performed after delivery of a single 4 Gy fraction either with or without HA using γ-H2Ax staining of tissue sections from the brain to quantify the amount of DNA damage in rats treated with HA, WBRT, or sham-irradiated (negative controls). RESULTS: The mean dose delivered to radiochromic film beneath the hippocampal block was 0.52 Gy compared to 3.93 Gy without the block, indicating an 87% reduction in the dose delivered to the hippocampus. This difference was consistent with doses predicted by Monte Carlo dose calculation. The Dose Volume Histogram (DVH) generated via Monte Carlo simulation showed an underdose of the target volume (brain minus hippocampus) with 50% of the target volume receiving 100% of the prescription isodose as a result of the lateral blocking techniques sparing some midline thalamic and subcortical tissue. Staining of brain sections with anti-phospho-Histone H2A.X (reflecting double-strand DNA breaks) demonstrated that this treatment protocol limited radiation dose to the hippocampus in vivo. The mean signal intensity from γ-H2Ax staining in the cortex was not significantly different from the signal intensity in the cortex of rats treated with WBRT (5.40 v. 5.75, P = 0.32). In contrast, the signal intensity in the hippocampus of rats treated with HA was significantly lower than rats treated with WBRT (4.55 v. 6.93, P = 0.012). CONCLUSION: Despite the challenges of planning conformal treatments for small volumes in rodents, our dosimetric and in vivo data show that WBRT with HA is feasible in rats. This study provides a useful platform for further application and refinement of the technique.


Assuntos
Irradiação Craniana/métodos , Hipocampo/efeitos da radiação , Animais , DNA/efeitos da radiação , Fracionamento da Dose de Radiação , Hipocampo/fisiopatologia , Radioterapia de Intensidade Modulada , Ratos , Ratos Wistar , Resultado do Tratamento
2.
Isotopes Environ Health Stud ; 37(1): 25-41, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11558654

RESUMO

The effect of soil temperature and moisture on plant growth and mineralisation of organic residues was investigated using 15N-labelled soybean residues and temperature-controlled tanks in the glasshouse. Treatments were arranged in a factorial design with: three soil temperatures (20, 26 and 30 degrees C), two soil moisture regimes (8% (-800 Kpa) or 12% (-100 Kpa)), soybean residues added (enriched at 1.82 atom % 15N excess) or no residues; and either sown with ryegrass or not sown. Pots were sampled six weeks after planting and 15N-enrichment and delta13C of the plant and soil fractions were determined. Soil inorganic N was also periodically measured. Available inorganic N increased significantly with addition of residues and generally decreased with increasing temperature. Plant dry matter decreased significantly with increase in soil temperature and increased with increasing moisture. Root-to-shoot ratio declined with increased temperature and moisture. Percentage nitrogen derived from residues (%Ndfr) increased linearly with increased temperature and moisture. Delta13C decreased linearly with increasing temperature and decreasing moisture status. There was a significant correlation between transpiration and dry matter production, but there was no correlation between water use efficiency and delta13C. The results suggest that C: N ratio of the root material effects the root turnover and in turn the water supply capacity of the root system.


Assuntos
Glycine max/crescimento & desenvolvimento , Secale/crescimento & desenvolvimento , Solo , Água , Áustria , Isótopos de Carbono , Ecossistema , Isótopos de Nitrogênio , Raízes de Plantas/fisiologia , Glycine max/fisiologia , Temperatura
3.
Anal Bioanal Chem ; 379(2): 242-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14963630

RESUMO

Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time.


Assuntos
Isótopos de Carbono/análise , Carbono/análise , Química Agrícola/métodos , Espectrofotometria Infravermelho/métodos , Animais , Testes Respiratórios , Carbono/metabolismo , Dióxido de Carbono/análise , Isótopos de Carbono/metabolismo , Helicobacter pylori/química , Espectrometria de Massas , Pisum sativum , Bicarbonato de Sódio/farmacologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA