Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Hum Brain Mapp ; 43(1): 167-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420672

RESUMO

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/anatomia & histologia , Transtorno Depressivo Maior/patologia , Substância Cinzenta/anatomia & histologia , Imageamento por Ressonância Magnética , Neuroimagem , Transtorno Obsessivo-Compulsivo/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
2.
Hum Brain Mapp ; 43(1): 23-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154629

RESUMO

Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.


Assuntos
Neuroimagem , Transtorno Obsessivo-Compulsivo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Humanos , Aprendizado de Máquina , Estudos Multicêntricos como Assunto , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/patologia
3.
Hum Brain Mapp ; 43(1): 37-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420680

RESUMO

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Encéfalo , Neuroimagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Estudos Multicêntricos como Assunto , Neurociências
4.
Neuropsychol Rev ; 32(4): 877-892, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35064524

RESUMO

Meta-analyses have shown that several neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and schizophrenia, are associated with a higher prevalence of atypical (left-, non-right-, or mixed-) handedness. One neurodevelopmental disorder for which this association is unclear is attention deficit hyperactivity disorder (ADHD). Here, some empirical studies have found evidence for a higher prevalence of atypical handedness in individuals with ADHD compared to neurotypical individuals. However, other studies failed to establish such an association. Therefore, meta-analytic integration is critical to estimate whether or not there is an association between handedness and ADHD. We report the results of three meta-analyses (left-, mixed-, and non-right-handedness) comparing handedness in individuals with ADHD to controls (typically developing individuals). The results show evidence of a trend towards elevated levels of atypical handedness when it comes to differences in left- and mixed-handedness (p = 0.09 and p = 0.07, respectively), but do show clear evidence of elevated levels of non-right-handedness between individuals with ADHD and controls (p = 0.02). These findings are discussed in the context of the hypothesis that ADHD is a disorder in which mostly right-hemispheric brain networks are affected. Since right-handedness represents a dominance of the left motor cortex for fine motor behavior, such as writing, as well as a left-hemispheric dominance for language functions, and about 90% of individuals are right-handers, this hypothesis might explain why there is not stronger evidence for an association of left-handedness with ADHD. We suggest that the mechanisms involved in the pathogenesis of ADHD might show an overlap with the mechanisms involved in handedness strength, but not handedness direction.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Lateralidade Funcional , Idioma , Córtex Cerebral
5.
Mol Psychiatry ; 26(6): 2101-2110, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33456050

RESUMO

Genomewide association studies have found significant genetic correlations among many neuropsychiatric disorders. In contrast, we know much less about the degree to which structural brain alterations are similar among disorders and, if so, the degree to which such similarities have a genetic etiology. From the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, we acquired standardized mean differences (SMDs) in regional brain volume and cortical thickness between cases and controls. We had data on 41 brain regions for: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), epilepsy, major depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia (SCZ). These data had been derived from 24,360 patients and 37,425 controls. The SMDs were significantly correlated between SCZ and BD, OCD, MDD, and ASD. MDD was positively correlated with BD and OCD. BD was positively correlated with OCD and negatively correlated with ADHD. These pairwise correlations among disorders were correlated with the corresponding pairwise correlations among disorders derived from genomewide association studies (r = 0.494). Our results show substantial similarities in sMRI phenotypes among neuropsychiatric disorders and suggest that these similarities are accounted for, in part, by corresponding similarities in common genetic variant architectures.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Humanos , Neuroimagem
6.
J Child Psychol Psychiatry ; 62(9): 1140-1149, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786843

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Neuroanatomic heterogeneity limits our understanding of ADHD's etiology. This study aimed to parse heterogeneity of ADHD and to determine whether patient subgroups could be discerned based on subcortical brain volumes. METHODS: Using the large ENIGMA-ADHD Working Group dataset, four subsamples of 993 boys with and without ADHD and to subsamples of 653 adult men, 400 girls, and 447 women were included in analyses. We applied exploratory factor analysis (EFA) to seven subcortical volumes in order to constrain the complexity of the input variables and ensure more stable clustering results. Factor scores derived from the EFA were used to build networks. A community detection (CD) algorithm clustered participants into subgroups based on the networks. RESULTS: Exploratory factor analysis revealed three factors (basal ganglia, limbic system, and thalamus) in boys and men with and without ADHD. Factor structures for girls and women differed from those in males. Given sample size considerations, we concentrated subsequent analyses on males. Male participants could be separated into four communities, of which one was absent in healthy men. Significant case-control differences of subcortical volumes were observed within communities in boys, often with stronger effect sizes compared to the entire sample. As in the entire sample, none were observed in men. Affected men in two of the communities presented comorbidities more frequently than those in other communities. There were no significant differences in ADHD symptom severity, IQ, and medication use between communities in either boys or men. CONCLUSIONS: Our results indicate that neuroanatomic heterogeneity in subcortical volumes exists, irrespective of ADHD diagnosis. Effect sizes of case-control differences appear more pronounced at least in some of the subgroups.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem
7.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33748971

RESUMO

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Núcleo Caudado , Criança , Humanos , Imageamento por Ressonância Magnética
8.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25607358

RESUMO

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Assuntos
Encéfalo/anatomia & histologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Apoptose/genética , Núcleo Caudado/anatomia & histologia , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Loci Gênicos/genética , Hipocampo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Tamanho do Órgão/genética , Putamen/anatomia & histologia , Caracteres Sexuais , Crânio/anatomia & histologia , Adulto Jovem
9.
Psychol Med ; 50(2): 314-323, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782224

RESUMO

BACKGROUND: The present paper presents a fundamentally novel approach to model individual differences of persons with the same biologically heterogeneous mental disorder. Unlike prevalent case-control analyses, that assume a clear distinction between patient and control groups and thereby introducing the concept of an 'average patient', we describe each patient's biology individually, gaining insights into the different facets that characterize persistent attention-deficit/hyperactivity disorder (ADHD). METHODS: Using a normative modeling approach, we mapped inter-individual differences in reference to normative structural brain changes across the lifespan to examine the degree to which case-control analyses disguise differences between individuals. RESULTS: At the level of the individual, deviations from the normative model were frequent in persistent ADHD. However, the overlap of more than 2% between participants with ADHD was only observed in few brain loci. On average, participants with ADHD showed significantly reduced gray matter in the cerebellum and hippocampus compared to healthy individuals. While the case-control differences were in line with the literature on ADHD, individuals with ADHD only marginally reflected these group differences. CONCLUSIONS: Case-control comparisons, disguise inter-individual differences in brain biology in individuals with persistent ADHD. The present results show that the 'average ADHD patient' has limited informative value, providing the first evidence for the necessity to explore different biological facets of ADHD at the level of the individual and practical means to achieve this end.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética , Substância Branca/patologia , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Adulto Jovem
10.
J Child Psychol Psychiatry ; 59(10): 1114-1123, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29693267

RESUMO

BACKGROUND: The cerebellum supports many cognitive functions disrupted in attention deficit hyperactivity disorder (ADHD). Prior neuroanatomic studies have been often limited by small sample sizes, inconsistent findings, and a reliance on cross-sectional data, limiting inferences about cerebellar development. Here, we conduct a multicohort study using longitudinal data, to characterize cerebellar development. METHODS: Growth trajectories of the cerebellar vermis, hemispheres and white matter were estimated using piecewise linear regression from 1,656 youth; of whom 63% had longitudinal data, totaling 2,914 scans. Four cohorts participated, all contained childhood data (age 4-12 years); two had adolescent data (12-25 years). Growth parameters were combined using random-effects meta-analysis. RESULTS: Diagnostic differences in growth were confined to the corpus medullare (cerebellar white matter). Here, the ADHD group showed slower growth in early childhood compared to the typically developing group (left corpus medullare z = 2.49, p = .01; right z = 2.03, p = .04). This reversed in late childhood, with faster growth in ADHD in the left corpus medullare (z = 2.06, p = .04). Findings held when gender, intelligence, comorbidity, and psychostimulant medication were considered. DISCUSSION: Across four independent cohorts, containing predominately longitudinal data, we found diagnostic differences in the growth of cerebellar white matter. In ADHD, slower white matter growth in early childhood was followed by faster growth in late childhood. The findings are consistent with the concept of ADHD as a disorder of the brain's structural connections, formed partly by developing cortico-cerebellar white matter tracts.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Neuroimagem , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Países Baixos , Adulto Jovem
11.
Neuroimage ; 145(Pt B): 389-408, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26658930

RESUMO

In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Transtornos Mentais , Estudos Multicêntricos como Assunto , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Transtornos Mentais/fisiopatologia
12.
Eur J Neurosci ; 45(12): 1501-1511, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27717213

RESUMO

The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of 'Met' carriers and homozygotes of the 'Val' allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Polimorfismo de Nucleotídeo Único , Navegação Espacial , Adulto , Hipocampo/fisiologia , Homozigoto , Humanos , Mutação de Sentido Incorreto
13.
J Child Psychol Psychiatry ; 58(8): 958-966, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28589541

RESUMO

BACKGROUND: The nitric oxide synthase gene (NOS1) exon 1f (ex1f) VNTR is a known genetic risk factor for Attention-Deficit/Hyperactivity Disorder (ADHD), particularly in females. NOS1 plays an important role in neurite outgrowth and may thus influence brain development, specifically white matter (WM) microstructure, which is known to be altered in ADHD. The current study aimed to investigate whether NOS1 is associated with WM microstructure in (female) individuals with and without ADHD. METHODS: Diffusion Tensor Imaging (DTI) scans were collected from 187 participants with ADHD (33% female) and 103 controls (50% female), aged 8-26 years, and NOS1-ex1f VNTR genotype was determined. Whole-brain analyses were conducted for fractional anisotropy (FA) and mean diffusivity (MD) to examine associations between NOS1 and WM microstructure, including possible interactions with gender and diagnosis. RESULTS: Consistent with previous literature, NOS1-ex1f was associated with total ADHD and hyperactivity-impulsivity symptoms, but not inattention; this effect was independent of gender. NOS1-ex1f was also associated with MD values in several major WM tracts in females, but not males. In females, homozygosity for the short allele was linked to higher MD values than carriership of the long allele. MD values in these regions did not correlate with ADHD symptoms. Results were similar for participants with and without ADHD. CONCLUSIONS: NOS1-ex1f VNTR is associated with WM microstructure in females in a large sample of participants with ADHD and healthy controls. Whether this association is part of a neurodevelopmental pathway from NOS1 to ADHD symptoms should be further investigated in future studies.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Óxido Nítrico Sintase Tipo I/genética , Substância Branca/anatomia & histologia , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão , Feminino , Genótipo , Humanos , Masculino , Caracteres Sexuais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
14.
J Psychiatry Neurosci ; 42(6): 386-394, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28832320

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is biologically heterogeneous, with different biological predispositions - mediated through developmental processes - converging upon a common clinical phenotype. Brain imaging studies have variably shown altered brain structure, activity and connectivity in children and adults with ADHD. Recent methodological developments allow for the integration of information across imaging modalities, potentially yielding a more coherent view regarding the biology underlying the disorder. METHODS: We analyzed a sample of adults with persistent ADHD and healthy controls using an advanced multimodal linked independent component analysis approach. Diffusion and structural MRI data were fused to form imaging markers reflecting independent components that explain variation across modalities. We included these markers as predictors into logistic regression models on adult ADHD and put those into context with predictions of estimated intelligence, age and sex. RESULTS: We included 87 adults with ADHD and 93 controls in our analysis. Participants' courses associated with all imaging markers explained 27.86% of the variance in adult ADHD. No single imaging modality dominated this result. Instead, it was explained by aggregation of relatively small effects across several modalities and markers. One of the top markers for adult ADHD was multimodal and linked to morphological and microstructural effects within anterior temporal brain regions; another was linked to cortical thickness. Several markers were also influenced by estimated intelligence, age and/or sex. LIMITATIONS: Although complex analytical approaches, such as the one applied here, provide insight into otherwise hidden mechanisms, they also increase the complexity of interpretations. CONCLUSION: No dominant imaging modality or marker characterizes structural brain phenotypes in adults with ADHD, but we can refine our characterization of the disorder by the integration of small effects across modalities.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Fatores Etários , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/patologia , Estudos de Coortes , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Inteligência , Modelos Logísticos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Multimodal , Tamanho do Órgão , Fatores Sexuais
15.
J Neural Transm (Vienna) ; 123(8): 905-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26935821

RESUMO

The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Corpo Estriado/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Adolescente , Adulto , Fatores Etários , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Estudos de Coortes , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Regressão , Adulto Jovem
16.
J Psychiatry Neurosci ; 40(5): 344-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079698

RESUMO

BACKGROUND: Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV. METHODS: We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters µ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging-derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest. RESULTS: We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed. LIMITATIONS: Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks. CONCLUSION: This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Atenção , Rede Nervosa/fisiopatologia , Tempo de Reação , Substância Branca/fisiopatologia , Adulto , Anisotropia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Fibras Nervosas , Testes Neuropsicológicos
17.
Behav Pharmacol ; 26(1-2): 227-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25485641

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is accompanied by impairments in cognitive control, such as task-switching deficits. We investigated whether such problems, and their remediation by medication, reflect abnormal reward motivation and associated striatal dopamine transmission in ADHD. We used functional genetic neuroimaging to assess the effects of dopaminergic medication and reward motivation on task-switching and striatal BOLD signal in 23 adults with ADHD, ON and OFF methylphenidate, and 26 healthy controls. Critically, we took into account interindividual variability in striatal dopamine by exploiting a common genetic polymorphism (3'-UTR VNTR) in the DAT1 gene coding for the dopamine transporter. The results showed a highly significant group by genotype interaction in the striatum. This was because a subgroup of patients with ADHD showed markedly exaggerated effects of reward on the striatal BOLD signal during task-switching when they were OFF their dopaminergic medication. Specifically, patients carrying the 9R allele showed a greater striatal signal than healthy controls carrying this allele, whereas no effect of diagnosis was observed in 10R homozygotes. Aberrant striatal responses were normalized when 9R-carrying patients with ADHD were ON medication. These pilot data indicate an important role for aberrant reward motivation, striatal dopamine and interindividual genetic differences in cognitive processes in adult ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cognição/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Regiões 3' não Traduzidas/genética , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estudos de Casos e Controles , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Humanos , Masculino , Motivação , Projetos Piloto , Polimorfismo Genético , Recompensa
18.
Am J Med Genet B Neuropsychiatr Genet ; 168(6): 508-515, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25847847

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder affecting both children and adults. One of the candidate genes for ADHD is DAT1, encoding the dopamine transporter. In an attempt to clarify its mode of action, we assessed brain activity during the reward anticipation phase of the Monetary Incentive Delay (MID) task in a functional MRI paradigm in 87 adult participants with ADHD and 77 controls (average age 36.5 years). The MID task activates the ventral striatum, where DAT1 is most highly expressed. A previous analysis based on standard statistical techniques did not show any significant dependencies between a variant in the DAT1 gene and brain activation [Hoogman et al. (2013); Neuropsychopharm 23:469-478]. Here, we used an alternative method for analyzing the data, that is, causal modeling. The Bayesian Constraint-based Causal Discovery (BCCD) algorithm [Claassen and Heskes (2012); Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence] is able to find direct and indirect dependencies between variables, determines the strength of the dependencies, and provides a graphical visualization to interpret the results. Through BCCD one gets an opportunity to consider several variables together and to infer causal relations between them. Application of the BCCD algorithm confirmed that there is no evidence of a direct link between DAT1 genetic variability and brain activation, but suggested an indirect link mediated through inattention symptoms and diagnostic status of ADHD. Our finding of an indirect link of DAT1 with striatal activity during reward anticipation might explain existing discrepancies in the current literature. Further experiments should confirm this hypothesis. © 2015 Wiley Periodicals, Inc.

19.
Am J Med Genet B Neuropsychiatr Genet ; 168(6): 492-507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26061966

RESUMO

Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N = 19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N = 225), and (3) the Brain Imaging Genetics cohort (BIG, N = 1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences. © 2015 Wiley Periodicals, Inc.

20.
Hum Brain Mapp ; 35(7): 3277-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24827550

RESUMO

Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10(-8) ). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Lateralidade Funcional/genética , Adolescente , Adulto , Idoso , Encéfalo/anatomia & histologia , Planejamento em Saúde Comunitária , Conjuntos de Dados como Assunto , Feminino , Seguimentos , Estudos de Associação Genética , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estatística como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA