RESUMO
Through measuring the intensity of the fluorescence X-rays emitted by the elements of interest, X-ray fluorescence computed tomography (XFCT) is capable of mapping the elemental distribution inside an object without destructively sectioning it. With the recent advances in XFCT utilizing polychromatic microfocus X-ray sources, it is expected that the popularity of such imaging modality will rise further. However, XFCT suffers from self-absorption effects, which make it challenging to reconstruct the elemental distribution inside the sample accurately. For this reason, polychromatic XFCT is mainly used to retrieve the distribution of elements with a relatively high atomic number (Z) when compared to the matrix of the sample. To enable the quantitative reconstruction of trace and low Z elements with polychromatic XFCT, a novel reconstruction method has been proposed in this manuscript. Through examining the proposed method on both simulation data and experimental data, its capacity on retrieving the density distribution of relatively low Z elements has been confirmed.
RESUMO
In the present work, porous gelatin scaffolds were prepared by cryogenic treatment of a chemically cross-linked gelatin hydrogel, followed by removal of the ice crystals formed through lyophilization. This technique often leads to porous gels with a less porous skin. A simple method has been developed to solve this problem. The present study demonstrates that the hydrogel pore size decreased with an increasing gelatin concentration and with an increasing cooling rate of the gelatin hydrogel. Variation of the cryogenic parameters applied also enabled us to develop scaffolds with different pore morphologies (spherical versus transversal channel-like pores). In our opinion, this is the first paper in which temperature gradients during controlled cryogenic treatment were applied to induce a pore size gradient in gelatin hydrogels. With a newly designed cryo-unit, temperature gradients of 10 and 30 degrees C were implemented during the freezing step, resulting in scaffolds with average pore diameters of, respectively, +/-116 and +/-330 microm. In both cases, the porosity and pore size decreased gradually through the scaffolds. Pore size and structure analysis of the matrices was accomplished through a combination of microcomputed tomography using different software packages (microCTanalySIS and Octopus), scanning electron microscopy analysis, and helium pycnometry.