Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Fish Shellfish Immunol ; 97: 656-668, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31891812

RESUMO

AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.


Assuntos
Hormônio do Crescimento/imunologia , Imunidade Inata , Salmo salar/imunologia , Temperatura , Triploidia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Aquicultura/métodos , Feminino , Expressão Gênica/imunologia , Hormônio do Crescimento/genética , Indutores de Interferon/administração & dosagem , Indutores de Interferon/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Salmo salar/genética , Estresse Fisiológico/efeitos dos fármacos , Viroses/imunologia , Viroses/veterinária
2.
Fish Shellfish Immunol ; 44(1): 365-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731920

RESUMO

The interferon regulatory factor (IRF) family of genes encodes a group of transcription factors that have important roles not only in regulating the expression of Type I interferons (IFNs) and other genes in the IFN pathway, but also in growth, development and the regulation of oncogenesis. In this study, several IRF family members (Irf4a, Irf4b, Irf7, Irf8, Irf10) in Atlantic cod (Gadus morhua) were characterized at the cDNA and putative amino acid levels, allowing for phylogenetic analysis of these proteins in teleost fish, as well as the development of gene-specific primers used in RT-PCR and quantitative PCR (QPCR) analyses. Two Atlantic cod Irf10 splice variants were identified and their presence confirmed by sequencing of the Irf10 genomic region. RT-PCR showed that Irf7, Irf8 and both Irf10 transcripts were expressed in all 15 cod tissues tested, while Irf4a and Irf4b were absent in some tissues. QPCR analysis of spleen expression expanded upon this, and upon previous work. All IRF transcripts in the study were responsive to stimulation by the viral mimic poly(I:C), and all except Irf4a were responsive to exposure to formalin-killed Aeromonas salmonicida (ASAL). These IRF genes, thus, are likely important in the cod immune response to both viral and bacterial infections. Increased temperature (10 °C to 16 °C) was also observed to modulate the antibacterial responses of all IRF transcripts, and the antiviral responses of Irf4b and Irf10-v2. This research supports earlier studies which reported that elevated temperature modulates the expression of many immune genes in Atlantic cod.


Assuntos
Proteínas de Peixes , Gadus morhua , Fatores Reguladores de Interferon , Aeromonas salmonicida/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Sequência de Bases , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/imunologia , Gadus morhua/metabolismo , Temperatura Alta , Indutores de Interferon/farmacologia , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Dados de Sequência Molecular , Filogenia , Poli I-C/farmacologia , Baço/imunologia , Baço/metabolismo
3.
Gen Comp Endocrinol ; 224: 126-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188716

RESUMO

The cunner (Tautogolabrus adspersus) is a fish with a wide latitudinal distribution that is capable of going into metabolic depression during the winter months, and thus, represents a unique model to investigate the impacts of cold temperatures on the stress response. In this study, we measured resting (pre-stress) plasma cortisol levels in 10 °C and 0 °C acclimated cunner from Newfoundland, and both catecholamine and cortisol levels after they were given a standardized handling stress (i.e. 1 min air exposure). In addition, we cloned and characterized cDNAs for several key genes of the cortisol-axis [cytochrome P450scc, steroidogenic acute regulatory protein (StAR) and a glucocorticoid receptor (GR) most likely to be an ortholog of the teleost GR2], determined the tissue distribution of their transcripts, and measured their constitutive (i.e. pre-stress) transcript levels in individuals acclimated to both temperatures. In cunner acclimated to 0 °C, post-stress epinephrine and norepinephrine levels were much lower (by approximately 9- and 5-fold, respectively) compared to 10 °C acclimated fish, and these fish had relatively low resting cortisol levels (~15 ngml(-1)) and showed a typical post-stress response. In contrast, those acclimated to 10 °C had quite high resting cortisol levels (~75 ngml(-1)) that actually decreased (to ~20 ngml(-1)) post-stress before returning to pre-stress levels. Finally, fish acclimated to 10 °C had higher P450scc transcript levels in the head kidney and lower levels of GR transcript in both the head kidney and liver. Taken together, these results suggest that: (1) temperature has a profound effect on the stress response of this species; and (2) although the ancestors of this species inhabited warm waters (i.e. they are members of the family Labridae), populations of cunner from colder regions may show signs of stress at temperatures as low as 10 °C.


Assuntos
Catecolaminas/sangue , Temperatura Baixa , Peixes/fisiologia , Hidrocortisona/sangue , Fosfoproteínas/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Fosfoproteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano
4.
G3 (Bethesda) ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935082

RESUMO

The smooth-shelled blue mussel, Mytilus edulis is part of the Mytilus species complex, encompassing at least three putative species: M. edulis, M. galloprovincialis and M. trossulus. These three species occur on both sides of the Atlantic and hybridize in nature, and both M. edulis and M. galloprovincialis are important aquaculture species. They are also invasive species in many parts of the world. Here, we present a chromosome-level assembly of Mytilus edulis. We used a combination of PacBio sequencing and Dovetail's Omni-C technology to generate an assembly with 14 long scaffolds containing 94% of the predicted length of the M. edulis genome (1.6 out of 1.7 Gb). Assembly statistics were total length 1.65 Gb, N50 = 116 Mb, L50 = 7 and, L90 = 13. BUSCO analysis showed 92.55% eukaryote BUSCOs identified. AB-Initio annotation using RNA-seq from mantle, gills, muscle and foot predicted 47,128 genes. These gene models were combined with IsoSeq validation resulting in 45,379 full CDS protein sequences and 129,708 isoforms. Using GBS and shotgun sequencing, we also sequenced several eastern Canadian populations of Mytilus to characterize single-nucleotide as well as structural variance. This high-quality genome for M. edulis provides a platform to develop tools that can be used in breeding, molecular ecology and evolution to address questions of both commercial and environmental perspectives.

5.
Genome ; 56(10): 567-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24237337

RESUMO

Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.


Assuntos
Aeromonas salmonicida/imunologia , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Gadus morhua/imunologia , Baço/imunologia , Transcriptoma , Animais , Antibacterianos/metabolismo , Antígenos Virais/genética , Aquicultura , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Gadus morhua/genética , Gadus morhua/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Injeções Intraperitoneais , Poli I-C/imunologia , Baço/metabolismo , Temperatura
6.
Sci Rep ; 13(1): 9685, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322246

RESUMO

There is tremendous variation in life-history strategies among anadromous salmonids. Species that enter the ocean environment at small sizes (< 20 g) are likely under more physiological pressure from pathogens; however, little data is available on responses at these early stages. With this in mind, we performed salmon louse challenges with Coho salmon either immediately after seawater entry (SW; ca. 10 g) or after 30 days in SW (ca. 20 g). Irrespective of size or time in SW, parasites were rapidly rejected by the host, with > 90% of all parasites lost by 16 days post-infection (dpi). Rejection was concomitant with host epithelial granulomatous infiltrations that initially targeted the embedded frontal filament (4 dpi) and the entire parasite by 10 dpi. Illumina sequencing, followed by functional enrichment analysis, revealed a concerted defense response in the fin within 1 dpi that included multiple innate and adaptive immunity components. Strikingly, early indications of an allergic-type inflammatory response were associated with chitin sensing pathways orchestrated by early overexpression of the IgE-receptor, fcer1g. Additionally, there was profound overexpression of several classes of c-type lectin receptors, including dectin-2, mincle, and dc-sign at 1 dpi onward. These profiles and upregulation of cellular effector markers were corroborated by histopathological evaluation, revealing the simultaneous presence of mast cell/eosinophilic granular cells, sacciform cells, macrophages/histiocytes, and granulocytes in fin. At 10 dpi and concurrent with parasite expulsion, there was evidence of immunoregulation in addition to tissue remodelling pathways. At 16 dpi, the response was effectively abrogated. Simultaneous profiling of the parasite transcriptome revealed early induction of chitin metabolism and immunomodulation, toxin production and ECM degradation; however, after 7 dpi, these were replaced with overexpression of stress and immune defense genes. These data present the first evidence for Coho salmon demonstrating chitin- and sugar moiety-sensing as key drivers of salmon louse rejection.


Assuntos
Copépodes , Doenças dos Peixes , Oncorhynchus kisutch , Animais , Oncorhynchus kisutch/genética , Copépodes/fisiologia , Quitina , Imunidade Adaptativa , Água do Mar , Doenças dos Peixes/genética
7.
BMC Genomics ; 13: 431, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22928584

RESUMO

BACKGROUND: Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). RESULTS: The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. CONCLUSIONS: The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen's transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/genética , Poli I-C/administração & dosagem , RNA Mensageiro/genética , Baço/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/imunologia , Proteínas de Peixes/imunologia , Pesqueiros , Gadus morhua/imunologia , Perfilação da Expressão Gênica , Hidrocortisona/sangue , Injeções Intraperitoneais , NF-kappa B/genética , NF-kappa B/imunologia , Terra Nova e Labrador , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/efeitos dos fármacos , Baço/imunologia , Temperatura
8.
Gen Comp Endocrinol ; 175(2): 311-20, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22146795

RESUMO

Cortisol is a major stress hormone in fish and is known, under normal or stressful conditions, to affect several physiological processes including growth and immunity. Thus, efforts have been made for several cultured finfish species, including the Atlantic cod, to determine whether fish with a high or low cortisol response to stress can be identified and selected. However, we have a limited understanding of the mechanisms that determine these two phenotypes. Thus, we measured total and free plasma cortisol levels in high and low responding cod when subjected to a 30 s handling stress, and the mRNA expression of four key genes in the glucocorticoid (i.e. cortisol) stress axis both pre- and post-stress. The cortisol data is consistent with our previous findings for cod, with high responding (HR) fish having ∼3-fold higher total and free plasma cortisol levels when compared to low responding (LR) fish. Three of the transcripts studied encode key proteins involved in steroidogenesis (StAR, P450scc and 3ßHSD), and the constitutive mRNA expression of all three genes was significantly higher (∼2-fold) in the head kidney of HR fish when compared to LR cod. The other gene of interest was the glucocorticoid receptor (GR). We partly cloned and characterized a cDNA from Atlantic cod likely to be this fish's ortholog of the teleost GR1, and showed that while there was no difference in hepatic constitutive GR mRNA expression between groups, HR fish had liver GR mRNA levels that were significantly (1.8-fold) higher at 3 h post-stress as compared to LR fish. Our results suggest that the different magnitude of cortisol response between LR and HR fish is at least partially determined by the capacity of the interrenal tissue to produce steroids.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/metabolismo , Hidrocortisona/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Hidrocortisona/sangue , Hidrocortisona/genética , Dados de Sequência Molecular , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
9.
Front Genet ; 13: 852165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677560

RESUMO

This study examined the impact of rearing temperature (10.5, 13.5 or 16.5°C) on the hepatic transcriptome of AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) at an average weight of 800 g. Six stranded PE libraries were Illumina-sequenced from each temperature group, resulting in an average of over 100 M raw reads per individual fish. RNA-sequencing (RNA-seq) results showed the greatest difference in the number of differentially expressed transcripts (1750 DETs), as revealed by both DESeq2 and edgeR (q < 0.05; fold-change > |1.5|), was between the 10.5 and 16.5°C temperature groups. In contrast, 172 and 52 DETs were found in the 10.5 vs. 13.5°C and the 13.5 vs. 16.5°C comparisons, respectively. Considering the DETs between the 10.5 and 16.5°C groups, 282 enriched gene ontology (GO) terms were identified (q < 0.05), including "response to stress", "immune system process", "lipid metabolic process", "oxidation-reduction process", and "cholesterol metabolic process", suggesting elevated temperature elicited broad effects on multiple biological systems. Pathway analysis using ClueGO showed additional impacts on amino acid and lipid metabolism. There was a significant positive correlation between RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) results for 8 of 9 metabolic-related transcripts tested. RT-qPCR results also correlated to changes in fillet tissue composition previously reported in these salmon (e.g., methionine and lysine concentrations positively correlated with hsp90ab1 transcript expression), suggesting that rearing temperature played a significant role in mediating metabolic/biosynthetic pathways of AquAdvantage Salmon. Many transcripts related to lipid/fatty acid metabolism (e.g., elovl2, fabpi, hacd2, mgll, s27a2, thrsp) were downregulated at 16.5°C compared to both other temperature groups. Additionally, enrichment of stress-, apoptosis- and catabolism-relevant GO terms at 16.5°C suggests that this temperature may not be ideal for commercial production when using freshwater recirculating aquaculture systems (RAS). This study relates phenotypic responses to transcript-specific findings and therefore aids in the determination of an optimal rearing temperature for AquAdvantage Salmon. With approval to grow and sell AquAdvantage Salmon in the United States and Canada, the novel insights provided by this research can help industry expansion by promoting optimal physiological performance and health.

10.
Front Immunol ; 12: 787033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046944

RESUMO

Sea lice (Lepeophtheirus salmonis) are ectoparasitic copepods that cause significant economic loss in marine salmoniculture. In commercial salmon farms, infestation with sea lice can enhance susceptibility to other significant pathogens, such as the highly contagious infectious salmon anemia virus (ISAv). In this study, transcriptomic analysis was used to evaluate the impact of four experimental functional feeds (i.e. 0.3% EPA/DHA+high-ω6, 0.3% EPA/DHA+high-ω6+immunostimulant (IS), 1% EPA/DHA+high-ω6, and 1% EPA/DHA+high-ω3) on Atlantic salmon (Salmo salar) during a single infection with sea lice (L. salmonis) and a co-infection with sea lice and ISAv. The overall objectives were to compare the transcriptomic profiles of skin between lice infection alone with co-infection groups and assess differences in gene expression response among animals with different experimental diets. Atlantic salmon smolts were challenged with L. salmonis following a 28-day feeding trial. Fish were then challenged with ISAv at 18 days post-sea lice infection (dpi), and maintained on individual diets, to establish a co-infection model. Skin tissues sampled at 33 dpi were subjected to RNA-seq analysis. The co-infection's overall survival rates were between 37%-50%, while no mortality was observed in the single infection with lice. With regard to the infection status, 756 and 1303 consensus differentially expressed genes (DEGs) among the four diets were identified in "lice infection vs. pre-infection" and "co-infection vs. pre-infection" groups, respectively, that were shared between the four experimental diets. The co-infection groups (co-infection vs. pre-infection) included up-regulated genes associated with glycolysis, the interferon pathway, complement cascade activity, and heat shock protein family, while the down-regulated genes were related to antigen presentation and processing, T-cell activation, collagen formation, and extracellular matrix. Pathway enrichment analysis conducted between infected groups (lice infection vs. co-infection) resulted in several immune-related significant GO terms and pathways unique to this group, such as "autophagosome", "cytosolic DNA-sensing pathway" and "response to type I interferons". Understanding how experimental functional feeds can impact the host response and the trajectory of co-infections will be an essential step in identifying efficacious intervention strategies that account for the complexities of disease in open cage culture.


Assuntos
Ração Animal , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar/microbiologia , Animais , Aquicultura , Coinfecção , Copépodes , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Pele , Transcriptoma
11.
Physiol Genomics ; 42(3): 361-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20551145

RESUMO

The retention of a nucleus in the mature state of fish red blood cells (RBCs) and the ability to easily collect and manipulate blood in nonterminal experiments make blood an ideal tissue on which to study the cellular stress response in fish. Through the use of the cGRASP 16K salmonid microarray, we investigated differences in RBC global gene transcription in fish held under control conditions (11 degrees C) and exposed to heat stress (1 h at 25 degrees C followed by recovery at 11 degrees C). Repeated blood sampling (via a dorsal aorta cannula) enables us to examine the individual stress response over time. Samples were taken preheat stress (representing individual control) and at 4 and 24 h postheat stress (representing early and late transcriptional regulation). Approximately 3,000 microarray features had signal above threshold when hybridized with RBC RNA-derived targets, and cannulation did not have a detectable effect on RBC mRNA expression at the investigated time points. Genes involved in the stress response, immune response, and apoptosis were among those showing the highest dysregulation during both early and late transcriptional regulation. Additionally, genes related to the differentiation and development of blood cells were transcriptionally upregulated at the 24 h time point. This study provides a broader understanding of the mechanisms underpinning the stress response in fish and the discovery of novel genes that are regulated in a stress specific manner. Moreover, salmonid transcripts that are consistently dysregulated in blood in response to heat stress are potential candidates of nonlethal biomarkers of exposure to this particular stressor.


Assuntos
Eritrócitos/metabolismo , Resposta ao Choque Térmico/genética , Oncorhynchus mykiss/genética , Animais , Eritroblastos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Temperatura Alta , Hidrocortisona/sangue , Análise de Sequência com Séries de Oligonucleotídeos , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
12.
Physiol Genomics ; 42(2): 266-80, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20442246

RESUMO

Nodaviruses and other RNA viruses have a profoundly negative impact on the global aquaculture industry. Nodaviruses target nervous tissue causing viral nervous necrosis, a disease characterized by neurological damage, swimming abnormalities, and morbidity. This study used functional genomic techniques to study the Atlantic cod (Gadus morhua) brain transcript expression responses to asymptomatic high nodavirus carrier state and intraperitoneal injection of polyriboinosinic polyribocytidylic acid (pIC). Reciprocal suppression subtractive hybridization (SSH) cDNA libraries enriched for virus-responsive brain transcripts were constructed and characterized. We generated 1,938 expressed sequence tags (ESTs) from a forward brain SSH library (enriched for transcripts upregulated by nodavirus and/or pIC) and 1,980 ESTs from a reverse brain SSH library (enriched for transcripts downregulated by nodavirus and/or pIC). To examine the effect of nodavirus carrier state on individual brain gene expression in asymptomatic cod, 27 transcripts of interest were selected for quantitative reverse transcription-polymerase chain reaction (QPCR) studies. Transcripts found to be >10-fold upregulated in individuals with a high nodavirus carrier state relative to those in a no/low nodavirus carrier state were identified as ISG15, IL8, DHX58 (alias LGP2), ZNFX1, RSAD2 (alias viperin), and SACS (sacsin, alias spastic ataxia of Charlevoix-Saguenay). These and other SSH-identified transcripts were also found by QPCR to be significantly (P < 0.05) upregulated by pIC compared with saline-injected controls within 72 h of injection. Several transcripts identified in the reverse SSH library, including two putative ubiquitination pathway members (HERC4 and SUMO2), were found to be significantly (P < 0.05) downregulated in individuals with a high nodavirus carrier state. Our data shows that Atlantic cod brains have a strong interferon pathway response to asymptomatic high nodavirus carrier state and that many interferon pathway and other immune relevant transcripts are significantly induced in brain by both nodavirus and pIC.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/genética , Gadus morhua/virologia , Nodaviridae/fisiologia , Animais , Etiquetas de Sequências Expressas , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Injeções Intraperitoneais , Hibridização de Ácido Nucleico , Poli I-C/administração & dosagem , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/veterinária
13.
BMC Genomics ; 11: 72, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20109224

RESUMO

BACKGROUND: Daily and seasonal changes in temperature are challenges that fish within aquaculture settings cannot completely avoid, and are known to elicit complex organismal and cellular stress responses. We conducted a large-scale gene discovery and transcript expression study in order to better understand the genes that are potentially involved in the physiological and cellular aspects of stress caused by heat-shock. We used suppression subtractive hybridization (SSH) cDNA library construction and characterization to identify transcripts that were dysregulated by heat-shock in liver, skeletal muscle and head kidney of Atlantic cod. These tissues were selected due to their roles in metabolic regulation, locomotion and growth, and immune function, respectively. Fish were exposed for 3 hours to an 8 degrees C elevation in temperature, and then allowed to recover for 24 hours at the original temperature (i.e. 10 degrees C). Tissue samples obtained before heat-shock (BHS), at the cessation of heat-shock (CS), and 3, 12, and 24 hours after the cessation of heat-shock (ACS), were used for reciprocal SSH library construction and quantitative reverse transcription - polymerase chain reaction (QPCR) analysis of gene expression using samples from a group that was transferred but not heat-shocked (CT) as controls. RESULTS: We sequenced and characterized 4394 ESTs (1524 from liver, 1451 from head kidney and 1419 from skeletal muscle) from three "forward subtracted" libraries (enriched for genes up-regulated by heat-shock) and 1586 from the liver "reverse subtracted" library (enriched for genes down-regulated by heat-shock), for a total of 5980 ESTs. Several cDNAs encoding putative chaperones belonging to the heat-shock protein (HSP) family were found in these libraries, and "protein folding" was among the gene ontology (GO) terms with the highest proportion in the libraries. QPCR analysis of HSP90alpha and HSP70-1 (synonym: HSPA1A) mRNA expression showed significant up-regulation in all three tissues studied. These transcripts were more than 100-fold up-regulated in liver following heat-shock. We also identified HSP47, GRP78 and GRP94-like transcripts, which were significantly up-regulated in all 3 tissues studied. Toll-like receptor 22 (TLR22) transcript, found in the liver reverse SSH library, was shown by QPCR to be significantly down-regulated in the head kidney after heat-shock. CONCLUSION: Chaperones are an important part of the cellular response to stress, and genes identified in this work may play important roles in resistance to thermal-stress. Moreover, the transcript for one key immune response gene (TLR22) was down-regulated by heat-shock, and this down-regulation may be a component of heat-induced immunosuppression.


Assuntos
Gadus morhua/genética , Genômica/métodos , Resposta ao Choque Térmico/genética , Animais , Etiquetas de Sequências Expressas , Gadus morhua/metabolismo , Perfilação da Expressão Gênica , Biblioteca Gênica , Temperatura Alta , Hidrocortisona/sangue , Rim/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Estresse Fisiológico
14.
Physiol Genomics ; 37(3): 149-63, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19240301

RESUMO

Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod (Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1 beta, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.


Assuntos
Aeromonas salmonicida/imunologia , Gadus morhua/genética , Perfilação da Expressão Gênica , Rim/metabolismo , Baço/metabolismo , Sequência de Aminoácidos , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Proteínas de Peixes/genética , Formaldeído , Gadus morhua/classificação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Biblioteca Gênica , Injeções Intraperitoneais , Fator Regulador 1 de Interferon/classificação , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
15.
Mar Biotechnol (NY) ; 18(3): 418-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27255337

RESUMO

The inclusion of plant meals in diets of farmed Atlantic salmon can elicit inflammatory responses in the distal intestine (DI). For the present work, fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent-extracted camelina meal (CM) (8, 16, or 24 % CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed all CM inclusion diets (Hixson et al. in Aquacult Nutr 22:615-630, 2016). A 4x44K oligonucleotide microarray experiment was carried out and significance analysis of microarrays (SAM) and rank products (RP) methods were used to identify differentially expressed genes between the DIs of fish fed the 24 % CM diet and those fed the FM diet. Twelve features representing six known transcripts and two unknowns were identified as CM responsive by both SAM and RP. The six known transcripts (including thioredoxin and ependymin), in addition to tgfb, mmp13, and GILT, were studied using qPCR with RNA templates from all four experimental diet groups. All six microarray-identified genes were confirmed to be CM responsive, as was tgfb and mmp13. Histopathological analyses identified signs of inflammation in the DI of salmon fed CM-containing diets, including lamina propria and sub-epithelial mucosa thickening, infiltration of eosinophilic granule cells, increased goblet cells and decreased enterocyte vacuolization. All of these were significantly altered in 24 % CM compared to all other diets, with the latter two also altered in 16 % CM compared with 8 % CM and control diet groups. Significant correlation was seen between histological parameters as well as between five of the qPCR analyzed genes and histological parameters. These molecular biomarkers of inflammation arising from long-term dietary CM exposure will be useful in the development of CM-containing diets that do not have deleterious effects on salmon growth or physiology.


Assuntos
Ração Animal/efeitos adversos , Brassicaceae/efeitos adversos , Proteínas de Peixes/genética , Intestinos/imunologia , RNA Mensageiro/genética , Salmo salar/genética , Animais , Brassicaceae/química , Dieta/efeitos adversos , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Intestinos/patologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/imunologia , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , RNA Mensageiro/imunologia , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
16.
PLoS One ; 10(3): e0118378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742646

RESUMO

Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar). Full siblings were reared in either a hatchery environment devoid of structure or an environment enriched with gravel substrate. At the end of endogenous feeding by juveniles, we examined patterns of gene transcript abundance in head tissues using the cGRASP-designed Agilent 4×44K microarray. Significance analysis of microarrays (SAM) indicated that 808 genes were differentially transcribed between the rearing environments and a total of 184 gene ontological (GO) terms were over- or under-represented in this gene list, several associated with mitosis/cell cycle and muscle and heart development. There were also pronounced differences among families in the degree of transcriptional response to rearing environment enrichment, suggesting that gene-by-environment effects, possibly related to parental origin, could influence the efficacy of enrichment interventions.


Assuntos
Comportamento Animal , Salmo salar/genética , Transcriptoma , Animais , Análise de Sequência com Séries de Oligonucleotídeos , Salmo salar/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-25681993

RESUMO

Due to increasing demand for fish oil (FO) and fish meal (FM) in aquafeeds, more sustainable alternatives such as plant-derived oils and proteins are needed. Camelina sativa products are viable feed ingredients given the high oil and crude protein content in the seed. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial [Control diet: FO; Test diets: 100% CO replacement of FO (100CO), or 100CO with solvent-extracted FM (100COSEFM), 10% CM (100CO10CM), or SEFM+10% CM (100COSEFM10CM)]. Diet composition, growth, and fatty acid analyses for this feeding trial were published previously. A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to controls, yielding 67 differentially expressed features (FDR<5%). Ten microarray-identified genes [cpt1, pcb, bar, igfbp-5b (2 paralogues), btg1, dnph1, lect-2, clra, klf9, and fadsd6a], and three additional genes involved in lipid metabolism [elovl2, elovl5 (2 paralogues), and fadsd5], were subjected to QPCR with liver templates from all 5 dietary treatments. Of the microarray-identified genes, only bar was not QPCR validated. Both igfbp-5b paralogues were significantly down-regulated, and fadsd6a was significantly up-regulated, in all 4 camelina-containing diet groups compared with controls. Multivariate statistics were used to correlate hepatic desaturase and elongase gene expression data with tissue fatty acid profiles, indicating the involvement of these genes in LC-PUFA biosynthesis. This nutrigenomic study provides molecular biomarkers for use in developing novel aquafeeds using camelina products.


Assuntos
Ração Animal , Fígado/metabolismo , Salmo salar/fisiologia , Transcriptoma , Animais , Salmo salar/genética
18.
Mar Genomics ; 18 Pt A: 3-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24878168

RESUMO

Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by family. The Atlantic cod ddc (dopa decarboxylase) complete cDNA was characterized, and has a 1461bp open reading frame encoding a 486 amino acid protein that contains all eight residues of the conserved pyridoxal 5'-phosphate binding site including the catalytic lysine. This study provides valuable new information and resources related to the Atlantic cod egg transcriptome. Some of these microarray-identified, qPCR-confirmed, Atlantic cod egg transcripts (e.g. ddc, kpna7) play important roles during embryonic development of other vertebrate species, and may have similar functions in Atlantic cod.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/embriologia , Gadus morhua/genética , Regulação da Expressão Gênica , Genômica , Animais , Feminino , Perfilação da Expressão Gênica , Análise em Microsséries , Óvulo/metabolismo
19.
Food Chem Toxicol ; 73: 157-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193261

RESUMO

Increasing use of plant feed ingredients may introduce contaminants not previously associated with farming of salmonids, such as pesticides and PAHs from environmental sources or from thermal processing of oil seeds. To screen for interaction effects of contaminants newly introduced in salmon feeds, Atlantic salmon primary hepatocytes were used. The xCELLigence cytotoxicity system was used to select optimal dosages of the PAHs benzo(a)pyrene and phenanthrene, the pesticides chlorpyrifos and endosulfan, and combinations of these. NMR and MS metabolic profiling and microarray transcriptomic profiling was used to identify novel biomarkers. Lipidomic and transcriptomic profiling suggested perturbation of lipid metabolism, as well as endocrine disruption. The pesticides gave the strongest responses, despite having less effect on cell viability than the PAHs. Only weak molecular responses were detected in PAH-exposed hepatocytes. Chlorpyrifos suppressed the synthesis of unsaturated fatty acids. Endosulfan affected steroid hormone synthesis, while benzo(a)pyrene disturbed vitamin D3 metabolism. The primary mixture effect was additive, although at high concentrations the pesticides acted in a synergistic fashion to decrease cell viability and down-regulate CYP3A and FABP4 transcription. This work highlights the usefulness of 'omics techniques and multivariate data analysis to investigate interactions within mixtures of contaminants with different modes of action.


Assuntos
Ração Animal , Contaminação de Alimentos , Plantas , Salmão , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Hepatócitos/citologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
20.
Artigo em Inglês | MEDLINE | ID: mdl-24145116

RESUMO

Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression level with fast-growing 3NGHTg salmon juveniles (including APOA1, APOA4, B2M, FADSD6, FTM, and GAPDH) are involved in metabolism, iron homeostasis and oxygen transport, and immune- or stress-related responses. The results of this study increase our knowledge of family-specific impacts on growth rate and hepatic gene expression in juvenile 3NGHTg Atlantic salmon. In addition, this study provides a suite of putative rapid growth rate-associated transcripts that may contribute to the development of molecular markers [e.g. intronic, exonic or regulatory region single nucleotide polymorphisms (SNPs)] for the selection of GHTg Atlantic salmon broodstock that can be utilized to produce sterile triploids of desired growth performance for future commercial applications.


Assuntos
Hormônio do Crescimento/genética , Fígado/metabolismo , Salmo salar/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Aquicultura , Metabolismo dos Carboidratos/genética , Expressão Gênica , Homeostase/genética , Ferro/metabolismo , Metabolismo dos Lipídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , Reação em Cadeia da Polimerase , Salmo salar/crescimento & desenvolvimento , Triploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA