Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Pharmacol Sci ; 152(2): 112-122, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169475

RESUMO

Aging is associated with impairment of multiple organs, including skeletal muscle and heart. In this study, we investigated whether resveratrol, an activator of an NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), attenuates age-related sarcopenia and cardiomyocyte hypertrophy in mice. Treatment of mice with resveratrol (0.4 g/kg diet) from 28 weeks of age for 32 weeks prevented aging-associated shortening of rotarod riding time. In the tibialis anterior (TA) muscle, histogram analysis showed that the atrophic muscle was increased in 60-week-old (wo) mice compared with 20-wo mice, which was attenuated by resveratrol. In the heart, resveratrol attenuated an aging-associated increase in the cardiomyocyte diameter. Acetylated proteins were increased and autophagic activity was reduced in the TA muscle of 60-wo mice compared with those of 20-wo mice. Resveratrol treatment reduced levels of acetylated proteins and restored autophagic activity in the TA muscle. Aging-related reduction in myocardial autophagy was also suppressed by resveratrol. Skeletal muscle-specific SIRT1 knockout mice showed increases in acetylated proteins and atrophic muscle fibers and reduced autophagic activity in the TA muscle. These results suggest that activation of SIRT1 by treatment with resveratrol suppresses sarcopenia and cardiomyocyte hypertrophy by restoration of autophagy in mice.


Assuntos
Sarcopenia , Estilbenos , Camundongos , Animais , Resveratrol/farmacologia , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sirtuína 1/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento , Miócitos Cardíacos/metabolismo , Hipertrofia , Estilbenos/farmacologia , Estilbenos/uso terapêutico
2.
Biochem Biophys Res Commun ; 546: 7-14, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33556638

RESUMO

SIRT1 is involved in the regulation of a variety of biological processes such as metabolism, stress response, autophagy and differentiation. Although progenitor cells of oligodendrocytes (OPCs) express high level of SIRT1, its function on differentiation is unknown. Because we have shown that SIRT1 plays a pivotal role in differentiation of neural precursor cells, we hypothesized that SIRT1 may also participate in the differentiation of oligodendrocytes (OLGs). We examined whether SIRT1 was expressed in two human oligodendrocyte cell lines: KG-1-C and MO 3.13 OLG. Transfection of cell lines with SIRT1-siRNA and SIRT2-siRNA promoted the extension of cellular processes. SIRT1-siRNA and SIRT2-siRNA increased acetyl-α-tubulin level, conversely, over expression of SIRTs resulted in decreased the ratio of acetyl-α-tubulin to α-tubulin. We also found knockdown of SIRT1 and SIRT2 induced overexpression of ßIV-tubulin and tubulin polymerization promoting protein (TPPP) (OLG-specific cytoskeleton-related molecules) that distributed widely in cell bodies. Taken together, SIRT1 may play a role in oligodenroglial differentiation and myelinogenesis.


Assuntos
Forma Celular , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Sirtuína 1/metabolismo , Acetilação , Diferenciação Celular/genética , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/genética , Sirtuína 1/deficiência , Sirtuína 1/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
J Pharmacol Exp Ther ; 376(3): 385-396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33335015

RESUMO

Resveratrol affords protection against reactive oxygen species (ROS)-related diseases via activation of SIRT1, an NAD+-dependent deacetylase. However, the low bioavailability of resveratrol limits its therapeutic applications. Since piceatannol is a hydroxyl analog of resveratrol with higher bioavailability, it could be an alternative to resveratrol. In this study, we compared the cytotoxicity, antioxidative activity, and mechanisms of cytoprotection of piceatannol with those of resveratrol. In C2C12 cells incubated with piceatannol, electrospray ionization mass spectrometry analysis showed that piceatannol was present in the intracellular fraction. A high concentration (50 µM) of piceatannol, but not resveratrol, induced mitochondrial depolarization and apoptosis. However, piceatannol at 10 µM inhibited the increase in mitochondrial ROS level induced by antimycin A, and this ROS reduction was greater than that by resveratrol. The reduction in hydrogen peroxide-induced ROS by piceatannol was also greater than that by resveratrol or vitamin C. Piceatannol reduced antimycin A-induced apoptosis more than did resveratrol. SIRT1 knockdown abolished the antiapoptotic activity of resveratrol, whereas it blocked only half of the antiapoptotic activity of piceatannol. Piceatannol, but not resveratrol, induced heme oxygenase-1 (HO1) expression, which was blocked by knockdown of the transcription factor NRF2, but not by SIRT1 knockdown. HO1 knockdown partially blocked the reduction of ROS by piceatannol. Furthermore, the antiapoptotic action of piceatannol was abolished by HO1 knockdown. Our results suggest that the therapeutic dose of piceatannol protects cells against mitochondrial ROS more than does resveratrol via SIRT1- and NRF2/HO1-dependent mechanisms. The activation of NRF2/HO1 could be an advantage of piceatannol compared with resveratrol for cytoprotection. SIGNIFICANCE STATEMENT: This study showed that piceatannol and resveratrol were different in cytotoxicity, oxidant-scavenging activities, and mechanisms of cytoprotection. Protection by piceatannol against apoptosis induced by reactive oxygen species was superior to that by resveratrol. In addition to the sirtuin 1-dependent pathway, piceatannol exerted nuclear factor erythroid 2-related factor 2/heme oxygenase-1-mediated antioxidative and antiapoptotic effects, which could be an advantage of piceatannol compared with resveratrol.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Resveratrol/farmacologia , Estilbenos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
BMC Neurol ; 21(1): 169, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882882

RESUMO

BACKGROUND: The physiological and pathological significance of the arachnoid membrane (AM) is still unknown. In this study, we investigated various characteristics of the AM, focusing on the influence of inflammation and fibrosis. METHODS: Small pieces of AM sample were obtained during neurosurgical procedures from 74 cases. The clinical and pathological characteristics of the hyperplastic AM group (≥ 50 µm) and the non-hyperplastic AM group (< 50 µm) were compared. Then, potential correlations between AM thickness and clinical characteristics were analyzed. Moreover, VEGFα, TGFß, and TGFα levels were quantitated by real time PCR. Then, the potential correlations between AM thickness and these inflammatory or anti-inflammatory markers, and the influence of the original disease were calculated. RESULTS: The median age of the patients in hyperplastic AM group was significantly older than that of the non-hyperplastic AM group. Moreover, the number of fibroblasts, CD68+ cells, CD86+ cells, and CD206+ cells in the hyperplastic AM group was significantly higher than that in the non-hyperplastic AM group. The AM thickness was significantly correlated to age and number of fibroblasts, CD68+ cells, CD86+ cells, and CD206+ cells. The thickness of the AM was significantly correlated to the messenger RNA expression levels of VEGFα (ρ = 0.337), and the VEGFα expression levels were significantly correlated with TGFß and TNFα. CONCLUSIONS: The AM hyperplasia was influenced by aging and could be a result of inflammation and fibrosis through cytokine secretion from the inflammatory cells and fibroblasts in the AM.


Assuntos
Envelhecimento/patologia , Aracnoide-Máter/patologia , Inflamação/patologia , Adulto , Idoso , Feminino , Fibrose/patologia , Humanos , Masculino , Pessoa de Meia-Idade
5.
J Biol Chem ; 289(42): 29285-96, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25187518

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) is a major positive regulator of the mitochondrial permeability transition pore (mPTP), a principle trigger of cell death, under the condition of oxidative stress. However, the mechanism by which cytosolic GSK-3ß translocates to mitochondria, promoting mPTP opening, remains unclear. Here we addressed this issue by analyses of the effect of site-directed mutations in GSK-3ß on mitochondrial translocation and protein/protein interactions upon oxidative stress. H9c2 cardiomyoblasts were transfected with GFP-tagged GSK-3ß (WT), a mutant GSK-3ß insensitive to inhibitory phosphorylation (S9A), or kinase-deficient GSK-3ß (K85R). Time lapse observation revealed that WT and S9A translocated from the cytosol to the mitochondria more promptly than did K85R after exposure to oxidative stress. H2O2 increased the density of nine spots on two-dimensional gel electrophoresis of anti-GSK-3ß-immunoprecipitates by more than 3-fold. MALDI-TOF/MS analysis revealed that one of the spots contained voltage-dependent anion channel 2 (VDAC2). Knockdown of VDAC2, but not VDAC1 or VDAC3, by siRNA attenuated both the mitochondrial translocation of GSK-3ß and mPTP opening under stress conditions. The mitochondrial translocation of GSK-3ß was attenuated also when Lys-15, but not Arg-4 or Arg-6, in the N-terminal domain of GSK-3ß was replaced with alanine. The oxidative stress-induced mitochondrial translocation of GSK-3ß was associated with an increase in cell death, which was suppressed by lithium chloride (LiCl), a GSK-3ß inhibitor. These results demonstrate that GSK-3ß translocates from the cytosol to mitochondria in a kinase activity- and VDAC2-dependent manner in which an N-terminal domain of GSK-3ß may function as a mitochondrial targeting sequence.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Transporte Biológico , Morte Celular , Citosol/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Peróxido de Hidrogênio/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Estresse Oxidativo , Permeabilidade , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Neurooncol ; 122(1): 11-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528635

RESUMO

Mitochondrial autophagy eliminates damaged mitochondria and decreases reactive oxygen species (ROS). The autophagy inhibitor chloroquine (CQ) potentiates temozolomide (TMZ) cytotoxicity in glioma cells, but it is not known whether CQ does this by inhibiting mitochondrial autophagy. The effects of CQ and TMZ on MitoSOX Red fluorescence, a mitochondrial ROS indicator, and cell death were examined in rat C6 glioma cells. Mitochondrial autophagy was monitored by the colocalization of MitoTracker Red fluorescence and EGFP-LC3 dots. Mitochondrial content was measured by MitoTracker Green fluorescence and immunoblotting for a mitochondrial protein. Finally, CQ's effects on tumor cells derived from a glioblastoma patient and human U87-MG glioblastoma cells were assessed. TMZ (100-1,000 µM) alone did not affect mitochondrial ROS or cell death in C6 cells, but when administered with CQ (10 µM), it increased mitochondrial ROS and cell death. Antioxidants significantly suppressed the CQ-augmented cell death in TMZ-treated cells, indicating that mitochondrial ROS were involved in this cell death. TMZ treatment reduced MitoTracker Green fluorescence and mitochondrial protein levels, and these effects were inhibited by CQ. TMZ also increased the colocalization of EGFP-LC3 dots with mitochondria, and CQ enhanced this effect. CQ potentiated TMZ-induced cytotoxicity in patient-derived glioblastoma cells as well as human U87-MG glioblastoma cells. These results suggest that CQ increases cellular ROS and augments TMZ cytotoxicity in glioma cells by inhibiting mitochondrial autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Dacarbazina/análogos & derivados , Sinergismo Farmacológico , Glioma/patologia , Mitocôndrias/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Dacarbazina/farmacologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Temozolomida , Células Tumorais Cultivadas
7.
J Biol Chem ; 288(8): 5963-72, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297412

RESUMO

Cardiomyopathy is the main cause of death in Duchenne muscular dystrophy. Here, we show that oral administration of resveratrol, which leads to activation of an NAD(+)-dependent protein deacetylase SIRT1, suppresses cardiac hypertrophy and fibrosis and restores cardiac diastolic function in dystrophin-deficient mdx mice. The pro-hypertrophic co-activator p300 protein but not p300 mRNA was up-regulated in the mdx heart, and resveratrol administration down-regulated the p300 protein level. In cultured cardiomyocytes, cardiomyocyte hypertrophy induced by the α(1)-agonist phenylephrine was inhibited by the overexpression of SIRT1 as well as resveratrol, both of which down-regulated p300 protein levels but not p300 mRNA levels. In addition, activation of atrial natriuretic peptide promoter by p300 was inhibited by SIRT1. We found that SIRT1 induced p300 down-regulation via the ubiquitin-proteasome pathway by deacetylation of lysine residues for ubiquitination. These findings indicate the pathological significance of p300 up-regulation in the dystrophic heart and indicate that SIRT1 activation has therapeutic potential for dystrophic cardiomyopathy.


Assuntos
Cardiomiopatias/tratamento farmacológico , Distrofina/genética , Proteína p300 Associada a E1A/metabolismo , Sirtuína 1/genética , Estilbenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cardiomegalia/metabolismo , Regulação para Baixo , Ecocardiografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenilefrina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Resveratrol , Ubiquitina/metabolismo
8.
J Pharmacol Exp Ther ; 344(1): 124-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042952

RESUMO

Resveratrol (trans-3,5,4'-trihydroxystilbene; RSV), a natural polyphenol, exerts a beneficial effect on health and diseases. RSV targets and activates the NAD(+)-dependent protein deacetylase SIRT1; in turn, SIRT1 induces an intracellular antioxidative mechanism by inducing mitochondrial superoxide dismutase (SOD2). Most RSV found in plants is glycosylated, and the effect of these glycosylated forms on SIRT1 has not been studied. In this study, we compared the effects of RSV and two glycosyl RSVs, resveratrol-3-O-ß-d-glucoside (3G-RSV; polydatin/piceid) and resveratrol-4'-O-ß-d-glucoside (4'G-RSV), at the cellular level. In oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays, the antioxidant activity of 3G-RSV was comparable to that of RSV, whereas the radical-scavenging efficiency of 4'G-RSV was less than 50% of that of RSV. However, 4'G-RSV, but not 3G-RSV, induced SIRT1-dependent histone H3 deacetylation and SOD2 expression in mouse C2C12 skeletal myoblasts; as with RSV, SIRT1 knockdown blunted these effects. RSV and 4'G-RSV, but not 3G-RSV, mitigated oxidative stress-induced cell death in C2C12 cells and primary neonatal rat cardiomyocytes. RSV and 4'G-RSV inhibited C2C12 cell proliferation, but 3G-RSV did not. RSV was found in both the intracellular and extracellular fractions of C2C12 cells that had been incubated with 4'G-RSV, indicating that 4'G-RSV was extracellularly deglycosylated to RSV, which was then taken up by the cells. C2C12 cells did not deglycosylate 3G-RSV. Our results point to 4'G-RSV as a useful RSV prodrug with high water solubility. These data also show that the in vitro antioxidative activity of these molecules did not correlate with their ability to protect cells from oxidative stress-induced apoptosis.


Assuntos
Antioxidantes/farmacologia , Citoproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Animais Recém-Nascidos , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/química , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Cromanos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/química , Glucosídeos/farmacologia , Imuno-Histoquímica , Camundongos , Mioblastos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Phytolacca americana/química , Picratos/química , Reação em Cadeia da Polimerase , Ratos , Resveratrol , Sirtuína 1/genética , Estilbenos/isolamento & purificação
9.
Cardiovasc Res ; 118(17): 3360-3373, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35258628

RESUMO

AIMS: Cardiotoxicity by doxorubicin predicts worse prognosis of patients. Accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. SIRT1, an NAD+-dependent histone/protein deacetylase, protects cells by deacetylating target proteins. We investigated whether SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating Ser139 phosphorylation of histone H2AX, a critical signal of the DNA damage response. METHODS AND RESULTS: Doxorubicin (5 mg/kg per week, x4) was administered to mice with intact SIRT1 (Sirt1f/f) and mice that lack SIRT1 activity in cardiomyocytes (Sirt1f/f;MHCcre/+). Reductions in left ventricular fractional shortening and ejection fraction by doxorubicin treatment were more severe in Sirt1f/f;MHCcre/+ than in Sirt1f/f. Myocardial expression level of type-B natriuretic peptide was 2.5-fold higher in Sirt1f/f;MHCcre/+ than in Sirt1f/f after doxorubicin treatment. Sirt1f/f;MHCcre/+ showed larger fibrotic areas and higher nitrotyrosine levels in the heart after doxorubicin treatment. Although doxorubicin-induced DNA damage evaluated by TUNEL staining was enhanced in Sirt1f/f;MHCcre/+, the myocardium from Sirt1f/f;MHCcre/+ showed blunted Ser139 phosphorylation of H2AX by doxorubicin treatment. In H9c2 cardiomyocytes, SIRT1 knockdown attenuated Ser139 phosphorylation of H2AX, increased DNA damage, and enhanced caspase-3 activation under doxorubicin treatment. Immunostaining revealed that acetylation level of H2AX at Lys5 was higher in hearts from Sirt1f/f;MHCcre/+. In H9c2 cells, acetyl-Lys5-H2AX level was increased by SIRT1 knockdown and reduced by SIRT1 overexpression. Ser139 phosphorylation in response to doxorubicin treatment was blunted in a mutant H2AX with substitution of Lys5 to Gln (K5Q) that mimics acetylated lysine compared with that in wild-type H2AX. Expression of K5Q-H2AX as well as S139A-H2AX, which cannot be phosphorylated at Ser139, augmented doxorubicin-induced caspase-3 activation. Treatment of mice with resveratrol, a SIRT1 activator, attenuated doxorubicin-induced cardiac dysfunction, which was associated with a reduction in acetyl-Lys5-H2AX level and a preserved phospho-Ser139-H2AX level. CONCLUSION: These findings suggest that SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating H2AX phosphorylation through its deacetylation in cardiomyocytes.


Assuntos
Histonas , Miócitos Cardíacos , Camundongos , Animais , Histonas/metabolismo , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Caspase 3/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Doxorrubicina/toxicidade , Apoptose
10.
Biochem Biophys Res Commun ; 429(1-2): 45-50, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23137540

RESUMO

We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of ß-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.


Assuntos
Apoptose , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Estresse Oxidativo , Sirtuína 1/metabolismo , Transativadores/biossíntese , Regulação para Cima , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , MAP Quinase Quinase 4/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Resveratrol , Sirtuína 1/genética , Estilbenos/farmacologia , Proteínas Virais Reguladoras e Acessórias
11.
Biochem Biophys Res Commun ; 423(2): 270-5, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22640743

RESUMO

Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of ß-catenin, we postulated that ß-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target ß-catenin in a colon cancer model, suppresses ß-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of ß-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced ß-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of ß-catenin. Treatment with MG132, a proteasomal inhibitor, restored ß-catenin protein levels, suggesting that SIRT1-mediated degradation of ß-catenin requires proteasomal activity. It was reported that inhibition of GSK-3ß or Siah-1 stabilizes ß-catenin in colon cancer cells, but suppression of GSK-3ß or Siah-1 using siRNA in the presence of resveratrol instead diminished ß-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3ß and Siah-1 are not involved in SIRT1-mediated degradation of ß-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of ß-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of ß-catenin.


Assuntos
Proliferação de Células , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Lectinas/genética , Oncogenes , Neoplasias Pancreáticas/patologia , Sirtuína 1/fisiologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Leupeptinas/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Sirtuína 1/genética
12.
Basic Res Cardiol ; 107(4): 273, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22622703

RESUMO

Sirtuins are a highly conserved family of histone/protein deacetylases whose activity can prolong the lifespan of model organisms such as yeast, worms and flies. In mammalian cells, seven sirtuins (SIRT1-7) modulate distinct metabolic and stress-response pathways, SIRT1 and SIRT3 having been most extensively investigated in the cardiovascular system. SIRT1 and SIRT3 are mainly located in the nuclei and mitochondria, respectively. They participate in biological functions related to development of heart failure, including regulation of energy production, oxidative stress, intracellular signaling, angiogenesis, autophagy and cell death/survival. Emerging evidence indicates that the two sirtuins play protective roles in failing hearts. Here, we summarize current knowledge of sirtuin functions in the heart and discuss its translation into therapy for heart failure.


Assuntos
Insuficiência Cardíaca/enzimologia , Miocárdio/enzimologia , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Animais , Cálcio/metabolismo , Fármacos Cardiovasculares/uso terapêutico , Morte Celular , Metabolismo Energético , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Mitocôndrias Cardíacas/enzimologia , Miocárdio/patologia , Neovascularização Fisiológica , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/uso terapêutico , Sirtuína 3/uso terapêutico
13.
Aging (Albany NY) ; 14(7): 2966-2988, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35378512

RESUMO

Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated ß-galactosidase (SA-ß-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-ß-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-ß-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-ß-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.


Assuntos
Senescência Celular , Fibroblastos , Animais , Proliferação de Células , Senescência Celular/genética , Regulação para Baixo , Fibroblastos/metabolismo , Camundongos , Fosforilação
14.
J Biochem ; 171(2): 201-213, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34718606

RESUMO

SIRT3 is an NAD+-dependent protein deacetylase localized in mitochondria. Several studies reported localization of SIRT3 in the cytoplasm or nucleus, but data of these studies were not consistent. We detected expression of mitochondrial (SIRT3mt) and cytoplasmic (SIRT3ct) Sirt3 mRNAs in the mouse brain, and we also found SIRT3 immunostaining of mitochondria and cytoplasm in the brain and cultured neural cells. However, expression levels of SIRT3ct in COS cells transfected with SIRT3ct cDNA were much lower than those of SIRT3mt. We found that SIRT3ct but not SIRT3mt was promptly degraded by ubiquitin-dependent degradation, in which SIRT3ct degradation was mediated mainly by ubiquitination of NH2-terminal methionine and partly by that of lysine residues of SIRT3ct. SIRT3ct expression level was significantly enhanced by the treatment of cells with staurosporine or H2O2. H2O2 treatment promoted nuclear translocation of SIRT3ct and induced histone H3 deacetylation and superoxide dismutase 2 expression. Overexpression of SIRT3ct decreased cell death caused by H2O2 at levels similar to those achieved by overexpression of SIRT3mt. Knockdown of Sirt3 mRNA increased cell death caused by amyloid-ß (Aß), and overexpression of SIRT3ct suppressed the toxic function of Aß in PC12 cells. These results indicate that SIRT3ct promotes cell survival under physiological and pathological conditions.


Assuntos
Sirtuína 3 , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Células PC12 , Ratos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ubiquitina/metabolismo
15.
J Biol Chem ; 285(11): 8375-82, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20089851

RESUMO

Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD(+)-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol's enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Insuficiência Cardíaca/metabolismo , Fibras Musculares Esqueléticas/enzimologia , Miócitos Cardíacos/enzimologia , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Adulto , Animais , Cardiomiopatia Dilatada/patologia , Núcleo Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Doença Crônica , Cricetinae , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Insuficiência Cardíaca/patologia , Humanos , Masculino , Mesocricetus , Camundongos , Fibras Musculares Esqueléticas/citologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Ratos , Resveratrol , Sirtuína 1/genética , Estilbenos/farmacologia
16.
J Pharmacol Exp Ther ; 338(3): 784-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21652783

RESUMO

Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. We previously showed that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and activator of the NAD(+)-dependent protein deacetylase SIRT1, delays the progression of heart failure and prolongs the lifespan of δ-sarcoglycan-deficient hamsters. Because a defect of dystroglycan complex causes muscular dystrophies, and δ-sarcoglycan is a component of this complex, we hypothesized that resveratrol might be a new therapeutic tool for muscular dystrophies. Here, we examined resveratrol's effect in mdx mice, an animal model of Duchenne muscular dystrophy. mdx mice that received resveratrol in the diet for 32 weeks (4 g/kg diet) showed significantly less muscle mass loss and nonmuscle interstitial tissue in the biceps femoris compared with mdx mice fed a control diet. In the muscles of these mice, resveratrol significantly decreased oxidative damage shown by the immunostaining of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine and suppressed the up-regulation of NADPH oxidase subunits Nox4, Duox1, and p47(phox). Resveratrol also reduced the number of α-smooth muscle actin (α-SMA)(+) myofibroblast cells and endomysial fibrosis in the biceps femoris, although the infiltration of CD45(+) inflammatory cells and increase in transforming growth factor-ß1 (TGF-ß1) were still observed. In C2C12 myoblast cells, resveratrol pretreatment suppressed the TGF-ß1-induced increase in reactive oxygen species, fibronectin production, and expression of α-SMA, and SIRT1 knockdown blocked these inhibitory effects. SIRT1 small interfering RNA also increased the expression of Nox4, p47(phox), and α-SMA in C2C12 cells. Taken together, these findings indicate that SIRT1 activation may be a useful strategy for treating muscular dystrophies.


Assuntos
Antioxidantes/uso terapêutico , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Estilbenos/uso terapêutico , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Creatina Quinase/metabolismo , Eletroporação , Fibroblastos/efeitos dos fármacos , Fibrose/prevenção & controle , Histonas/metabolismo , Imuno-Histoquímica , Indicadores e Reagentes , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/metabolismo
17.
Clin Sci (Lond) ; 121(5): 191-203, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21599635

RESUMO

Sirtuins are NAD+-dependent protein deacetylases that are broadly conserved from bacteria to humans. Because sirtuins extend the lifespan of yeast, worms and flies, much attention has been paid to their mammalian homologues. Recent studies have revealed diverse physiological functions of sirtuins that are essentially similar to those of their yeast homologue, Sir2 (silent information regulator 2). Sirtuins are implicated in the pathology of many diseases, for which sirtuin activators such as resveratrol have great promise as potential treatments. In the present review, we describe the functions of sirtuins in cell survival, inflammation, energy metabolism, cancer and differentiation, and their impact on diseases. We also discuss the organ-specific functions of sirtuins, focusing on the brain and blood vessels.


Assuntos
Sirtuínas/fisiologia , Animais , Glicemia/metabolismo , Morte Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Reparo do DNA/fisiologia , Metabolismo Energético/fisiologia , Humanos , Inflamação/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/fisiologia
18.
Proc Natl Acad Sci U S A ; 105(40): 15599-604, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18829436

RESUMO

Neural precursor cells (NPCs) differentiate into neurons, astrocytes, and oligodendrocytes in response to intrinsic and extrinsic changes. Notch signals maintain undifferentiated NPCs, but the mechanisms underlying the neuronal differentiation are largely unknown. We show that SIRT1, an NAD(+)-dependent histone deacetylase, modulates neuronal differentiation. SIRT1 was found in the cytoplasm of embryonic and adult NPCs and was transiently localized in the nucleus in response to differentiation stimulus. SIRT1 started to translocate into the nucleus within 10 min after the transfer of NPCs into differentiation conditions, stayed in the nucleus, and then gradually retranslocated to the cytoplasm after several hours. The number of neurospheres that generated Tuj1(+) neurons was significantly decreased by pharmacological inhibitors of SIRT1, dominant-negative SIRT1 and SIRT1-siRNA, whereas overexpression of SIRT1, but not that of cytoplasm-localized mutant SIRT1, enhanced neuronal differentiation and decreased Hes1 expression. Expression of SIRT1-siRNA impaired neuronal differentiation and migration of NPCs into the cortical plate in the embryonic brain. Nuclear receptor corepressor (N-CoR), which has been reported to bind SIRT1, promoted neuronal differentiation and synergistically increased the number of Tuj1(+) neurons with SIRT1, and both bound the Hes1 promoter region in differentiating NPCs. Hes1 transactivation by Notch1 was inhibited by SIRT1 and/or N-CoR. Our study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Histona Desacetilases/metabolismo , Neurônios/citologia , Sirtuínas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células Cultivadas , Citoplasma/metabolismo , Feminino , Camundongos , Neurônios/metabolismo , Gravidez , Sirtuína 1
19.
Sci Rep ; 10(1): 20585, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239684

RESUMO

Muscular dystrophies (MDs) are inherited disorders characterized by progressive muscle weakness. Previously, we have shown that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and an activator of the protein deacetylase SIRT1, decreases muscular and cardiac oxidative damage and improves pathophysiological conditions in animal MD models. To determine whether resveratrol provides therapeutic benefits to patients with MDs, an open-label, single-arm, phase IIa trial of resveratrol was conducted in 11 patients with Duchenne, Becker or Fukuyama MD. The daily dose of resveratrol was 500 mg/day, which was increased every 8 weeks to 1000 and then 1500 mg/day. Primary outcomes were motor function, evaluated by a motor function measure (MFM) scale, muscular strength, monitored with quantitative muscle testing (QMT), and serum creatine kinase (CK) levels. Adverse effects and tolerability were evaluated as secondary outcomes. Despite the advanced medical conditions of the patients, the mean MFM scores increased significantly from 34.6 to 38.4 after 24 weeks of medication. A twofold increase was found in the mean QMT scores of scapula elevation and shoulder abduction. Mean CK levels decreased considerably by 34%. Diarrhoea and abdominal pain was noted in six and three patients, respectively. Resveratrol may provide some benefit to MD patients.


Assuntos
Atividade Motora/efeitos dos fármacos , Distrofias Musculares/tratamento farmacológico , Resveratrol/uso terapêutico , Adolescente , Adulto , Antioxidantes/uso terapêutico , Criança , Creatina Quinase/análise , Creatina Quinase/sangue , Feminino , Humanos , Japão , Masculino , Força Muscular/efeitos dos fármacos , Debilidade Muscular/tratamento farmacológico , Distrofias Musculares/fisiopatologia , Estilbenos/uso terapêutico , Adulto Jovem
20.
Biochem Biophys Res Commun ; 386(4): 671-5, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19555662

RESUMO

An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.


Assuntos
Regulação Enzimológica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sirtuínas/genética , Transativadores/metabolismo , Ativação Transcricional , Linhagem Celular , Humanos , Neurogênese/genética , Receptores Nucleares Órfãos , Regiões Promotoras Genéticas , Sirtuína 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA