Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 696: 149516, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241808

RESUMO

Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.


Assuntos
Fissura Palatina , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética
2.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962411

RESUMO

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Assuntos
Proliferação de Células , Fissura Palatina , Palato , Extratos Vegetais , Tretinoína , Humanos , Tretinoína/farmacologia , Proliferação de Células/efeitos dos fármacos , Palato/efeitos dos fármacos , Palato/embriologia , Palato/citologia , Extratos Vegetais/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , MicroRNAs/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Toxicol Sci ; 49(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38191190

RESUMO

Cleft palate (CP) is one of the most common birth defects and is caused by a combination of genetic and/or environmental factors. Environmental factors such as pharmaceutical exposure in pregnant women are known to induce CP. Recently, microRNA (miRNA) was found to be affected by environmental factors. The aim of the present study was to investigate the involvement of miRNA against phenytoin (PHE)-induced inhibition of proliferation in human embryonic palatal mesenchymal (HEPM) cells. We demonstrated that PHE inhibited HEPM cell proliferation in a dose-dependent manner. We found that treatment with PHE downregulated cyclin-D1 and cyclin-E expressions in HEPM cells. Furthermore, PHE increased miR-4680-3p expression and decreased two downstream genes (ERBB2 and JADE1). Importantly, an miR-4680-3p-specific inhibitor restored HEPM cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with PHE. These results suggest that PHE suppresses cell proliferation via modulation of miR-4680-3p expression.


Assuntos
MicroRNAs , Fenitoína , Gravidez , Humanos , Feminino , Fenitoína/toxicidade , MicroRNAs/genética , Proliferação de Células , Palato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA