Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Lett ; 8(2): 267-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525035

RESUMO

Apoptosis is regulated cell death that depends on caspases. A specific initiator caspase is involved upstream of each apoptotic signaling pathway. Characterized in nematode, fly, and mammals, intrinsic apoptosis is considered to be ancestral, conserved among animals, and depends on shared initiators: caspase-9, Apaf-1 and Bcl-2. However, the biochemical role of mitochondria, the pivotal function of cytochrome c and the modality of caspase activation remain highly heterogeneous and hide profound molecular divergence among apoptotic pathways in animals. Uncovering the phylogenetic history of apoptotic actors, especially caspases, is crucial to shed light on the evolutionary history of intrinsic apoptosis. Here, we demonstrate with phylogenetic analyses that caspase-9, the fundamental key of intrinsic apoptosis, is deuterostome-specific, while caspase-2 is ancestral to bilaterians. Our analysis of Bcl-2 and Apaf-1 confirms heterogeneity in functional organization of apoptotic pathways in animals. Our results support emergence of distinct intrinsic apoptotic pathways during metazoan evolution.

2.
Curr Biol ; 33(10): 1883-1892.e3, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37028430

RESUMO

In most animals, pluripotency is irreversibly lost post gastrulation. By this stage, all embryonic cells have already committed either to one of the somatic lineages (ectoderm, endoderm, or mesoderm) or to the germline. The lack of pluripotent cells in adult life may be linked to organismal aging. Cnidarians (corals and jellyfish) are an early branch of animals that do not succumb to age, but the developmental potential of their adult stem cells remains unclear. Here, we show that adult stem cells in the cnidarian Hydractinia symbiolongicarpus (known as i-cells) are pluripotent. We transplanted single i-cells from transgenic fluorescent donors to wild-type recipients and followed them in vivo in the translucent animals. Single engrafted i-cells self-renewed and contributed to all somatic lineages and gamete production, co-existing with and eventually displacing the allogeneic recipient's cells. Hence, a fully functional, sexually competent individual can derive from a single adult i-cell. Pluripotent i-cells enable regenerative, plant-like clonal growth in these animals.


Assuntos
Células-Tronco Adultas , Cnidários , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Células Germinativas
3.
Cell Rep ; 42(7): 112687, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392741

RESUMO

Cell fate stability is essential to maintaining "law and order" in complex animals. However, high stability comes at the cost of reduced plasticity and, by extension, poor regenerative ability. This evolutionary trade-off has resulted in most modern animals being rather simple and regenerative or complex and non-regenerative. The mechanisms mediating cellular plasticity and allowing for regeneration remain unknown. We show that signals emitted by senescent cells can destabilize the differentiated state of neighboring somatic cells, reprogramming them into stem cells that are capable of driving whole-body regeneration in the cnidarian Hydractinia symbiolongicarpus. Pharmacological or genetic inhibition of senescence prevents reprogramming and regeneration. Conversely, induction of transient ectopic senescence in a regenerative context results in supernumerary stem cells and faster regeneration. We propose that senescence signaling is an ancient mechanism mediating cellular plasticity. Understanding the senescence environment that promotes cellular reprogramming could provide an avenue to enhance regeneration.


Assuntos
Cnidários , Animais , Reprogramação Celular , Senescência Celular/genética , Transdução de Sinais , Células-Tronco
4.
G3 (Bethesda) ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37294738

RESUMO

Hydractinia symbiolongicarpus is a pioneering model organism for stem cell biology, being one of only a few animals with adult pluripotent stem cells (known as i-cells). However, the unavailability of a chromosome-level genome assembly has hindered a comprehensive understanding of global gene regulatory mechanisms underlying the function and evolution of i-cells. Here, we report the first chromosome-level genome assembly of H. symbiolongicarpus (HSymV2.0) using PacBio HiFi long-read sequencing and Hi-C scaffolding. The final assembly is 483 Mb in total length with 15 chromosomes representing 99.8% of the assembly. Repetitive sequences were found to account for 296 Mb (61%) of the total genome; we provide evidence for at least two periods of repeat expansion in the past. A total of 25,825 protein-coding genes were predicted in this assembly, which include 93.1% of the metazoan Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set. 92.8% (23,971 genes) of the predicted proteins were functionally annotated. The H. symbiolongicarpus genome showed a high degree of macrosynteny conservation with the Hydra vulgaris genome. This chromosome-level genome assembly of H. symbiolongicarpus will be an invaluable resource for the research community that enhances broad biological studies on this unique model organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA