Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 189(2): 541-556, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238373

RESUMO

The pathway of starch synthesis in guard cells (GCs), despite the crucial role starch plays in stomatal movements, is not well understood. Here, we characterized starch dynamics in GCs of Arabidopsis (Arabidopsis thaliana) mutants lacking enzymes of the phosphoglucose isomerase-phosphoglucose mutase-ADP-glucose pyrophosphorylase starch synthesis pathway in leaf mesophyll chloroplasts or sugar transporters at the plastid membrane, such as glucose-6-phosphate/phosphate translocators, which are active in heterotrophic tissues. We demonstrate that GCs have metabolic features of both photoautotrophic and heterotrophic cells. GCs make starch using different carbon precursors depending on the time of day, which can originate both from GC photosynthesis and/or sugars imported from the leaf mesophyll. Furthermore, we unravel the major enzymes involved in GC starch synthesis and demonstrate that they act in a temporal manner according to the fluctuations of stomatal aperture, which is unique for GCs. Our work substantially enhances our knowledge on GC starch metabolism and uncovers targets for manipulating GC starch dynamics to improve stomatal behavior, directly affecting plant productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Amido/metabolismo
2.
Plant Cell ; 28(8): 1860-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27436713

RESUMO

Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of ß-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. (14)C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica/fisiologia , Folhas de Planta/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Plant J ; 84(5): 949-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26466761

RESUMO

Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Giberelinas/farmacologia , Histonas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Nucleossomos/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Fotoperíodo , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais , Temperatura
4.
Development ; 139(21): 4072-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992955

RESUMO

The transition from vegetative to reproductive development is a central event in the plant life cycle. To time the induction of flowering correctly, plants integrate environmental and endogenous signals such as photoperiod, temperature and hormonal status. The hormone gibberellic acid (GA) has long been known to regulate flowering. However, the spatial contribution of GA signaling in flowering time control is poorly understood. Here we have analyzed the effect of tissue-specific misexpression of wild-type and GA-insensitive (dellaΔ17) DELLA proteins on the floral transition in Arabidopsis thaliana. We demonstrate that under long days, GA affects the floral transition by promoting the expression of flowering time integrator genes such as FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in leaves independently of CONSTANS (CO) and GIGANTEA (GI). In addition, GA signaling promotes flowering independently of photoperiod through the regulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in both the leaves and at the shoot meristem. Our data suggest that GA regulates flowering by controlling the spatial expression of floral regulatory genes throughout the plant in a day-length-specific manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Flores/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo
5.
Plant Cell ; 24(8): 3320-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22942378

RESUMO

Gibberellin (GA), a diterpene hormone, plays diverse roles in plant growth and development, including seed germination, stem elongation, and flowering time. Although it is known that GA accelerates flowering through degradation of transcription repressors, DELLAs, the underlying mechanism is poorly understood. We show here that DELLA directly binds to microRNA156 (miR156)-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, which promote flowering by activating miR172 and MADS box genes. The interaction between DELLA and SPL interferes with SPL transcriptional activity and consequently delays floral transition through inactivating miR172 in leaves and MADS box genes at shoot apex under long-day conditions or through repressing MADS box genes at the shoot apex under short-day conditions. Our results elucidate the molecular mechanism by which GA controls flowering and provide the missing link between DELLA and MADS box genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Flores/fisiologia , Giberelinas/farmacologia , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , MicroRNAs/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Proteínas Repressoras/genética , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
6.
Front Plant Sci ; 10: 993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417599

RESUMO

Reactive oxygen species (ROS) are produced in cells as normal cellular metabolic by-products. ROS concentration is normally low, but it increases under stress conditions. To stand ROS exposure, organisms evolved series of responsive mechanisms. One such mechanism is protein S-glutathionylation. S-glutathionylation is a post-translational modification typically occurring in response to oxidative stress, in which a glutathione reacts with cysteinyl residues, protecting them from overoxidation. α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. The Arabidopsis genome contains three genes encoding α-amylases. The sole chloroplastic member, AtAMY3, is involved in osmotic stress response and stomatal opening and is redox-regulated by thioredoxins. Here we show that AtAMY3 activity was sensitive to ROS, such as H2O2. Treatments with H2O2 inhibited enzyme activity and part of the inhibition was irreversible. However, in the presence of glutathione this irreversible inhibition was prevented through S-glutathionylation. The activity of oxidized AtAMY3 was completely restored by simultaneous reduction by both glutaredoxin (specific for the removal of glutathione-mixed disulfide) and thioredoxin (specific for the reduction of protein disulfide), supporting a possible liaison between both redox modifications. By comparing free cysteine residues between reduced and GSSG-treated AtAMY3 and performing oxidation experiments of Cys-to-Ser variants of AtAMY3 using biotin-conjugated GSSG, we could demonstrate that at least three distinct cysteinyl residues can be oxidized/glutathionylated, among those the two previously identified catalytic cysteines, Cys499 and Cys587. Measuring the pK a values of the catalytic cysteines by alkylation at different pHs and enzyme activity measurement (pK a1 = 5.70 ± 0.28; pK a2 = 7.83 ± 0.12) showed the tendency of one of the two catalytic cysteines to deprotonation, even at physiological pHs, supporting its propensity to undergo redox post-translational modifications. Taking into account previous and present findings, a functional model for redox regulation of AtAMY3 is proposed.

7.
Curr Biol ; 26(3): 362-70, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26774787

RESUMO

Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of ß-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Estômatos de Plantas/fisiologia , Amido/metabolismo , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA