Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(24): e2100531, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978317

RESUMO

Pseudomonas aeruginosa biofilms cause persistent and chronic infections, most known clinically in cystic fibrosis (CF). Tobramycin (TOB) is a standard anti-pseudomonal antibiotic; however, in biofilm infections, its efficacy severely decreases due to limited permeability across the biofilm matrix. Herewith, a biomimetic, nanostructured, lipid liquid crystal nanoparticle-(LCNP)-formulation is discovered to significantly enhance the efficacy of TOB and eradicate P. aeruginosa biofilm infections. Using an advanced, biologically-relevant co-culture model of human CF bronchial epithelial cells infected with P. aeruginosa biofilms at an air-liquid interface, nebulized TOB-LCNPs completely eradicated 1 × 109 CFU mL-1 of P. aeruginosa after two doses, a 100-fold improvement over the unformulated antibiotic. The enhanced activity of TOB is not observed with a liposomal formulation of TOB or with ciprofloxacin, an antibiotic that readily penetrates biofilms. It is demonstrated that the unique nanostructure of the LCNPs drives the enhanced penetration of TOB across the biofilm barrier, but not through the healthy lung epithelium barrier, significantly increasing the available antibiotic concentration at the site of infection. The LCNPs are an innovative strategy to improve the performance of TOB as a directed pulmonary therapy, enabling the administration of lower doses, reducing the toxicity, and amplifying the anti-biofilm activity of the anti-pseudomonal antibiotic.


Assuntos
Fibrose Cística , Cristais Líquidos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Fibrose Cística/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Tobramicina
2.
J Antimicrob Chemother ; 76(6): 1472-1479, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712824

RESUMO

BACKGROUND: Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES: Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS: Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS: PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS: These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Muco , Tobramicina/farmacologia
3.
Handb Exp Pharmacol ; 265: 157-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33095300

RESUMO

Lung diseases have increasingly attracted interest in the past years. The all-known fear of failing treatments against severe pulmonary infections and plans of the pharmaceutical industry to limit research on anti-infectives to a minimum due to cost reasons makes infections of the lung nowadays a "hot topic." Inhalable antibiotics show promising efficacy while limiting adverse systemic effects to a minimum. Moreover, in times of increased life expectancy in developed countries, the treatment of chronic maladies implicating inflammatory diseases, like bronchial asthma or chronic obstructive pulmonary disease, becomes more and more exigent and still lacks proper treatment.In this chapter, we address in vitro models as well as necessary in vivo models to help develop new drugs for the treatment of various severe pulmonary diseases with a strong focus on infectious diseases. By first presenting the essential hands-on techniques for the setup of in vitro models, we intend to combine these with already successful and interesting model approaches to serve as some guideline for the development of future models. The overall goal is to maximize time and cost-efficacy and to minimize attrition as well as animal trials when developing novel anti-infective therapeutics.


Assuntos
Preparações Farmacêuticas , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inflamação/tratamento farmacológico , Pulmão , Pseudomonas aeruginosa
4.
ACS Infect Dis ; 8(1): 137-149, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34919390

RESUMO

As an alternative to technically demanding and ethically debatable animal models, the use of organotypic and disease-relevant human cell culture models may improve the throughput, speed, and success rate for the translation of novel anti-infectives into the clinic. Besides bacterial killing, host cell viability and barrier function appear as relevant but seldomly measured readouts. Moreover, bacterial virulence factors and signaling molecules are typically not addressed in current cell culture models. Here, we describe a reproducible protocol for cultivating barrier-forming human bronchial epithelial cell monolayers on Transwell inserts and infecting them with microclusters of pre-grown mature Pseudomonas aeruginosa PAO1 biofilms under the air-liquid interface conditions. Bacterial growth and quorum sensing molecules were determined upon tobramycin treatment. The host cell response was simultaneously assessed through cell viability, epithelial barrier function, and cytokine release. By repeated deposition of aerosolized tobramycin after 1, 24, and 48 h, bacterial growth was controlled (reduction from 10 to 4 log10 CFU/mL), which leads to epithelial cell survival for up to 72 h. E-cadherin's cell-cell adhesion protein expression was preserved with the consecutive treatment, and quorum sensing molecules were reduced. However, the bacteria could not be eradicated and epithelial barrier function was impaired, similar to the currently observed situation in the clinic in lack of more efficient anti-infective therapies. Such a human-based in vitro approach has the potential for the preclinical development of novel anti-infectives and nanoscale delivery systems for oral inhalation.


Assuntos
Pseudomonas aeruginosa , Tobramicina , Antibacterianos/farmacologia , Biofilmes , Células Epiteliais , Humanos , Tobramicina/farmacologia
5.
Front Bioeng Biotechnol ; 9: 643491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968912

RESUMO

The deposition of pre-metered doses (i.e., defined before and not after exposition) at the air-liquid interface of viable pulmonary epithelial cells remains an important but challenging task for developing aerosol medicines. While some devices allow quantification of the deposited dose after or during the experiment, e.g., gravimetrically, there is still no generally accepted way to deposit small pre-metered doses of aerosolized drugs or pharmaceutical formulations, e.g., nanomedicines. Here, we describe a straightforward custom-made device, allowing connection to commercially available nebulizers with standard cell culture plates. Designed to tightly fit into the approximately 12-mm opening of either a 12-well Transwell® insert or a single 24-well plate, a defined dose of an aerosolized liquid can be directly deposited precisely and reproducibly (4.8% deviation) at the air-liquid interface (ALI) of pulmonary cell cultures. The deposited dose can be controlled by the volume of the nebulized solution, which may vary in a range from 20 to 200 µl. The entire nebulization-deposition maneuver is completed after 30 s and is spatially homogenous. After phosphate-buffered saline (PBS) deposition, the viability and barrier properties transepithelial electrical resistance (TEER) of human bronchial epithelial Calu-3 cells were not negatively affected. Straightforward in manufacture and use, the device enables reproducible deposition of metered doses of aerosolized drugs to study the interactions with pulmonary cell cultures grown at ALI conditions.

6.
J Vis Exp ; (160)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32597860

RESUMO

fDrug research for the treatment of lung infections is progressing towards predictive in vitro models of high complexity. The multifaceted presence of bacteria in lung models can re-adapt epithelial arrangement, while immune cells coordinate an inflammatory response against the bacteria in the microenvironment. While in vivo models have been the choice for testing new anti-infectives in the context of cystic fibrosis, they still do not accurately mimic the in vivo conditions of such diseases in humans and the treatment outcomes. Complex in vitro models of the infected airways based on human cells (bronchial epithelial and macrophages) and relevant pathogens could bridge this gap and facilitate the translation of new anti-infectives into the clinic. For such purposes, a co-culture model of the human cystic fibrosis bronchial epithelial cell line CFBE41o- and THP-1 monocyte-derived macrophages has been established, mimicking an infection of the human bronchial mucosa by P. aeruginosa at air-liquid interface (ALI) conditions. This model is set up in seven days, and the following parameters are simultaneously assessed: epithelial barrier integrity, macrophage transmigration, bacterial survival, and inflammation. The present protocol describes a robust and reproducible system for evaluating drug efficacy and host responses that could be relevant for discovering new anti-infectives and optimizing their aerosol delivery to the lungs.


Assuntos
Ar , Anti-Infecciosos/farmacologia , Brônquios/patologia , Técnicas de Cocultura , Células Epiteliais/microbiologia , Macrófagos/microbiologia , Pseudomonas aeruginosa/fisiologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Citocinas/metabolismo , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , L-Lactato Desidrogenase/metabolismo , Macrófagos/efeitos dos fármacos , Permeabilidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Células THP-1 , Tobramicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA