Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7845): 275-278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568820

RESUMO

Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank-Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6-11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.

2.
J Am Chem Soc ; 146(26): 17887-17897, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38914009

RESUMO

Amide-based organic cage cavities are, in principle, ideal enzyme active site mimics. Yet, cage-promoted organocatalysis has remained elusive, in large part due to synthetic accessibility of robust and functional scaffolds. Herein, we report the acyl transfer catalysis properties of robust, hexaamide cages in organic solvent. Cage structural variation reveals that esterification catalysis with an acyl anhydride acyl carrier occurs only in bifunctional cages featuring internal pyridine motifs and two crucial antipodal carboxylic acid groups. 1H NMR data and X-ray crystallography show that the acyl carrier is rapidly activated inside the cavity as a covalent mixed-anhydride intermediate with an internal hydrogen bond. Michaelis-Menten (saturation) kinetics suggest weak binding (KM = 0.16 M) of the alcohol pronucleophile close to the internal anhydride. Finally, activation and delivery of the alcohol to the internal anhydride by the second carboxylic acid group forms ester product and releases the cage catalyst. Eyring analysis indicates a strong enthalpic stabilization of the transition state (5.5 kcal/mol) corresponding to a rate acceleration of 104 over background acylation, and an ordered, associative rate-determining attack by the alcohol, supported by DFT calculations. We conclude that internal bifunctional organocatalysis specific to the cage structural design is responsible for the enhancement over the background reaction. These results pave the way for organic-phase enzyme mimicry in self-assembled cavities with the potential for cavity elaboration to enact selective acylations.

3.
Inorg Chem ; 63(18): 8273-8285, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656154

RESUMO

A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.

4.
Inorg Chem ; 63(21): 9931-9940, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38738860

RESUMO

A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 µs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.

5.
J Am Chem Soc ; 145(21): 11859-11865, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37201942

RESUMO

Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented ß,ß-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.

6.
Chemistry ; 29(9): e202203241, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394514

RESUMO

A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1  cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.

7.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050036

RESUMO

The synthesis and characterization of six new substituted guanidium tetrahydroxidohexaoxidopentaborate(1-) salts are reported: [C(NH2)2(NHMe)][B5O6(OH)4]·H2O (1), [C(NH2)2(NH{NH2})][B5O6(OH)4] (2), [C(NH2)2(NMe2)][B5O6(OH)4] (3), [C(NH2)(NMe2)2][B5O6(OH)4] (4), [C(NHMe)(NMe2)2][B5O6(OH)4]·B(OH)3 (5), and [TBDH][B5O6(OH)4] (6) (TBD = 1,5,7-triazabicyclo [4.4.0]dec-5-ene). Compounds 1-6 were prepared as crystalline salts from basic aqueous solution via self-assembly processes from B(OH)3 and the appropriate substituted cation. Compounds 1-6 were characterized by spectroscopic (NMR and IR) and by single-crystal XRD studies. A thermal (TGA) analysis on compounds 1-3 and 6 demonstrated that they thermally decomposed via a multistage process to B2O3 at >650 °C. The low temperature stage (<250 °C) was endothermic and corresponded to a loss of H2O. Reactant stoichiometry, solid-state packing, and H-bonding interactions are all important in assembling these structures. An analysis of H-bonding motifs in known unsubstituted guanidinium salts [C(NH2)3]2[B4O5(OH)4]·2H2O, [C(NH2)3][B5O6(OH)4]·H2O, and [C(NH2)3]3[B9O12(OH)6] and in compounds 1-6 revealed that two important H-bonding R22(8) motifs competed to stabilize the observed structures. The guanidinium cation formed charge-assisted pincer cation-anion H-bonded rings as a major motif in [C(NH2)3]2[B4O5(OH)4]·2H2O and [C(NH2)3]3[B9O12(OH)6], whereas the anion-anion ring motif was dominant in [C(NH2)3][B5O6(OH)4]·H2O and in compounds 1-6. This behaviour was consistent with the stoichiometry of the salt and packing effects also strongly influencing their solid-state structures.

8.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836710

RESUMO

Two substituted phosphonium tetrahydoxidohexaoxidopentaborate(1-) salts, [iPrPPh3][B5O6(OH)4]·3.5H2O (1) and [MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O (2), were prepared by templated self-assembly processes with good yields by crystallization from basic methanolic aqueous solutions primed with B(OH)3 and the appropriate phosphonium cation. Salts 1 and 2 were characterized by spectroscopic (NMR and IR) and thermal (TGA/DSC) analysis. Salts 1 and 2 were thermally decomposed in air at 800 °C to glassy solids via the anhydrous phosphonium polyborates that are formed at lower temperatures (<300 °C). BET analysis of the anhydrous and pyrolysed materials indicated they were non-porous with surface areas of 0.2-2.75 m2/g. Rhe recrystallization of 1 and 2 from aqueous solution afforded crystals suitable for single-crystal XRD analyses. The structure of 1 comprises alternating cationic/anionic layers with the H2O/pentaborate(1-) planes held together by H-bonds. The cationic planes have offset face-to-face (off) and vertex-to-face (vf) aromatic ring interactions with the iPr groups oriented towards the pentaborate(1-)/H2O layers. The anionic lattice in 2 is expanded by the inclusion of B(OH)3 molecules to accommodate the large cations; this results in the formation of a stacked pentaborate(1-)/B(OH)3 structure with channels occupied by the cations. The cations within the channels have vf, ef (edge-to-face), and off phenyl embraces. Both H-bonding and phenyl embrace interactions are important in stabilizing these two solid-state structures.

9.
Angew Chem Int Ed Engl ; 62(36): e202305326, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37218617

RESUMO

We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.


Assuntos
Frutose-Bifosfato Aldolase , Peptídeos , Modelos Moleculares , Peptídeos/química , Aminoácidos/química , Aldeído Liases , Ligação de Hidrogênio
10.
Angew Chem Int Ed Engl ; 62(46): e202312610, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37750665

RESUMO

Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2  V-1 s-1 for the 8-AGNR.

11.
Chemistry ; 27(10): 3427-3439, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33242225

RESUMO

Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.

12.
Inorg Chem ; 60(20): 15467-15484, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34605234

RESUMO

A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).

13.
Inorg Chem ; 59(4): 2266-2277, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32013422

RESUMO

A series of heteroleptic, neutral iridium(III) complexes of the form [Ir(L)2(N^O)] (where L = cyclometalated 2,3-disubstituted quinoxaline and N^O = ancillary picolinate or pyrazinoate) are described in terms of their synthesis and spectroscopic properties, with supporting computational analyses providing additional insight into the electronic properties. The 10 [Ir(L)2(N^O)] complexes were characterized using a range of analytical techniques (including 1H, 13C, and 19F NMR and IR spectroscopies and mass spectrometry). One of the examples was structurally characterized using X-ray diffraction. The redox properties were determined using cyclic voltammetry, and the electronic properties were investigated using UV-vis, time-resolved luminescence, and transient absorption spectroscopies. The complexes are phosphorescent in the red region of the visible spectrum (λem = 633-680 nm), with lifetimes typically of hundreds of nanoseconds and quantum yields ca. 5% in aerated chloroform. A combination of spectroscopic and computational analyses suggests that the long-wavelength absorption and emission properties of these complexes are strongly characterized by a combination of spin-forbidden metal-to-ligand charge-transfer and quinoxaline-centered transitions. The emission wavelength in these complexes can thus be controlled in two ways: first, substitution of the cyclometalating quinoxaline ligand can perturb both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital levels (LUMO, Cl atoms on the ligand induce the largest bathochromic shift), and second, the choice of the ancillary ligand can influence the HOMO energy (pyrazinoate stabilizes the HOMO, inducing hypsochromic shifts).

14.
Molecules ; 25(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877919

RESUMO

The synthesis of a number of pentaborate(1-) salts from cations arising from N-substituted α,α-, α,ß-, and α,γ-diaminoalkanes has been attempted in aqueous solution from B(OH)3 and the appropriate diammine in a 10:1 ratio. Despite relatively mild work-up conditions the pentaborate(1-) salts prepared were not always as anticipated and the following compounds were isolated in good yield: [Me2NH(CH2)2NHMe2][B5O6(OH)4]2 (1), [Et2NH(CH2)2NHEt2][B5O6(OH)4]2 (2), [Et2NH2][B5O6(OH)4] (3), [Me2NH2][B5O6(OH)4] (4), [Me2NH(CH2)3NHMe2][B5O6(OH)4]2 (5), [Et2NH(CH2)3NHEt2][B5O6(OH)4]2 (6), [Me3NCH2CH=CH2][B5O6(OH)4] (7), and [Me3N(CH2)3NMe3] [B5O6(OH)4]2.0.5H2O (8). The tetraborate(2-) salt, [Me3N(CH2)2NMe3][B4O5(OH)4].2B(OH)3.2H2O (9) was obtained in moderate yield (41%) from a 3:1 reaction of B(OH)3 with [Me3N(CH2)2NMe3](OH)2. All compounds were characterized by spectroscopy (1H, 11B, 13C NMR and IR) and thermal gravimetric analysis (TGA). BET analysis on materials derived thermally from selected samples (1, 2, 6, 7) all had porosities of < 1 m2/g, demonstrating that they were non-porous. Single-crystal XRD structures were obtained for 2, 3, 7, 8 and 9 and all contain extensive H-bonded polyborate lattices.


Assuntos
Compostos de Amônio/química , Boratos/química , Sais/química , Cátions/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Cloreto de Sódio/química , Água/química
15.
Chemistry ; 24(17): 4310-4319, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29266538

RESUMO

Starting from (η5 -acetylcyclopentadienyl)(η4 -tetraphenylcyclobutadiene)cobalt(I), highly enantioselective (99 % ee) (S)-CBS catalysed ketone reduction followed by stereospecific alcohol-azide exchange, azide reduction and dimethyllation gave (R)-(η5 -α-N,N-dimethylaminoethylcyclopentadienyl)(η4 -tetraphenylcyclobutadiene) cobalt(I) (Arthurs' amine). This underwent highly diastereoselective cyclopalladation to give di-µ-acetate-bis-(R)-[(η5 -(Sp )-2-(α-N,N-dimethylaminoethyl)cyclopentadienyl, 1-C, N)(η4 -tetraphenylcyclobutadiene)cobalt(I)]dipalladium, and highly diastereoselective lithiation to give (R)-(η5 -(Sp )-1-(α-N,N-dimethylaminoethyl)-2-(diphenylphosphino)cyclopentadienyl)(η4 -tetraphenylcyclobutadiene)cobalt(I) (PPCA) following the addition as electrophile of chlorodiphenylphosphine. This PN-ligand was converted into (R)-(η5 -(Sp )-1-(α-dicyclohexylphosphinoethyl)-2-(diphenylphosphino)cyclopentadienyl)(η4 -tetraphenylcyclobutadiene)cobalt(I), a PP-ligand (Rossiphos), by stereospecific amine-phosphine exchange using HPCy2 . These air-stable P-N and P-P complexes are the first examples of a new class of bulky planar chiral ligands for application in asymmetric catalysis.

16.
Chemistry ; 24(34): 8577-8588, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29668061

RESUMO

A series of substituted 2-phenylquinoxaline ligands have been explored to finely tune the visible emission properties of a corresponding set of cationic, cyclometallated iridium(III) complexes. The electronic and redox properties of the complexes were investigated through experimental (including time-resolved luminescence and transient absorption spectroscopy) and theoretical methods. The complexes display absorption and phosphorescent emissions in the visible region that are attributed to metal to ligand charge-transfer transitions. The different substitution patterns of the ligands induce variations in these parameters. Time-dependent DFT studies support these assignments and show that there is likely to be a strong spin-forbidden contribution to the visible absorption bands at λ=500-600 nm. Calculations also reliably predict the magnitude and trends in triplet emitting wavelengths for the series of complexes. The complexes were assessed as potential sensitisers in triplet-triplet annihilation upconversion experiments by using 9,10-diphenylanthracene as the acceptor; the methylated variants performed especially well with impressive upconversion quantum yields of up to 39.3 %.

17.
Chemistry ; 23(39): 9407-9418, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28543913

RESUMO

A first-generation machine-assisted approach towards the preparation of hybrid ligand/metal materials has been developed. A comparison of synthetic approaches demonstrates that incorporation of both flow chemistry and microwave heating can be successfully applied to the rapid synthesis of a range of new phenyl-1H-pyrazoles (ppz) substituted with electron-withdrawing groups (-F, -CF3 , -OCF3 , and -SF5 ). These, in turn, can be translated into heteroleptic complexes, [Ir(ppz)2 (bipy)]BF4 (bipy=2,2'-bipyridine). Microwave-assisted synthesis for the IrIII complexes allows isolation of spectroscopically pure species in less than 1 h of reaction time starting from IrCl3 . All of the new complexes have been characterised photophysically (including nanosecond time-resolved transient absorption spectroscopy), electrochemically, and by TD-DFT studies. The complexes exhibit ligand-dependent, tuneable, green-yellow luminescence (500-560 nm), with quantum yields in the range 5-15 %.

18.
Chemistry ; 22(9): 3065-72, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26809030

RESUMO

Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate.

19.
J Org Chem ; 80(7): 3429-39, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25756661

RESUMO

Using toluene dioxygenase as biocatalyst, enantiopure cis-dihydrodiol and cis-tetrahydrodiol metabolites, isolated as their ketone tautomers, were obtained from meta and ortho methoxyphenols. Although these isomeric phenol substrates are structurally similar, the major bioproducts from each of these biotransformations were found at different oxidation levels. The relatively stable cyclohexenone cis-diol metabolite from meta methoxyphenol was isolated, while the corresponding metabolite from ortho methoxyphenol was rapidly bioreduced to a cyclohexanone cis-diol. The chemistry of the 3-methoxycyclohexenone cis-diol product was investigated and elimination, aromatization, hydrogenation, regioselective O-exchange, Stork-Danheiser transposition and O-methylation reactions were observed. An offshoot of this technology provided a two-step chemoenzymatic synthesis, from meta methoxyphenol, of a recently reported chiral fungal metabolite; this synthesis also established the previously unassigned absolute configuration.


Assuntos
Cicloexanonas/química , Oxigenases/química , Fenóis/química , Biocatálise , Biotransformação , Cristalografia por Raios X , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Naftalenos/química , Oxirredução , Estereoisomerismo
20.
Inorg Chem ; 54(2): 412-4, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25531386

RESUMO

The synthesis and X-ray diffraction structure of [Co(en)3][B5O6(OH)4][B8O10(OH)6]·5H2O (1) are reported. Compound 1 arises through a selective-templating process from a Dynamic Combinatorial Library of polyborate anions. Compound 1 contains two different polyborate species, with [B8O10(OH)6](2-) being particularly novel. It is comprised of fused tetraborate and pentaborate anions with a 4-coordinate B atom and a 3-coordinate O atom in common.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA