Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 25(1): 325-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37945942

RESUMO

A case series of the use of amniotic membrane (AM) for treating chronic nonhealing wounds. It presents five cases of polymorbid patients with a total of nine chronic nonhealing wounds. The patient group consisted of four men and one woman with various comorbidities, aged 45-72 years. The mean initial wound size was 15.8 cm2, and the mean time from the onset of the wound to the first application of AM was 122 weeks. The wounds were caused by chronic venous insufficiency and/or peripheral arterial disease. Wounds were treated in a standardized protocol. AM was applied weekly in the first month and then every two weeks. Photo documentation of the wound and microbiological colonization was carried out at each visit. In three out of five patients, the AM treatment effectively promoted healing up to complete wound closure. In two cases, the wounds stayed unhealed despite numerous AM applications. Pain relief was noted in all patients. The success of the treatment was closely tied to patient factors, such as adherence to the prescribed treatment regimen and individual patient characteristics. In some cases, treatment failure was observed, possibly due to underlying comorbidities, wound parameters, or poor patient compliance. AM treatment has the potential to become a viable treatment option for these nonhealing wounds. However, the effectiveness of the treatment may be influenced by various patient factors and the underlying cause of the wound. Therefore, it is crucial to have an individualized treatment plan that considers these particular factors.


Assuntos
Âmnio , Cicatrização , Masculino , Feminino , Humanos , Resultado do Tratamento , Criopreservação/métodos , Estudos Retrospectivos
2.
Cell Tissue Bank ; 24(4): 779-788, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227562

RESUMO

This study aimed to evaluate the efficacy of cryopreserved amniotic membrane (AM) grafts in chronic wound healing, including the mean percentage of wound closure per one AM application, and to determine whether the healing efficiency differs between AM grafts obtained from different placentas. A retrospective study analyzing inter-placental differences in healing capacity and mean wound closure after the application of 96 AM grafts prepared from nine placentas. Only the placentas from which the AM grafts were applied to patients suffering from long-lasting non-healing wounds successfully healed by AM treatment were included. The data from the rapidly progressing wound-closure phase (p-phase) were analyzed. The mean efficiency for each placenta, expressed as an average of wound area reduction (%) seven days after the AM application (baseline, 100%), was calculated from at least 10 applications. No statistical difference between the nine placentas' efficiency was found in the progressive phase of wound healing. The 7-day average wound reduction in particular placentas varied from 5.70 to 20.99% (median from 1.07 to 17.75) of the baseline. The mean percentage of wound surface reduction of all analyzed defects one week after the application of cryopreserved AM graft was 12.17 ± 20.12% (average ± SD). No significant difference in healing capacity was observed between the nine placentas. The data suggest that if there are intra- and inter-placental differences in AM sheets' healing efficacy, they are overridden by the actual health status of the subject or even the status of its individual wounds.


Assuntos
Âmnio , Placenta , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Âmnio/transplante , Cicatrização , Criopreservação
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430886

RESUMO

In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.


Assuntos
Caulim , Impressão Tridimensional , Poliésteres , Excipientes , Temperatura Alta
4.
Int Wound J ; 19(5): 1243-1252, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34791774

RESUMO

We evaluated the effect of the application of cryo-preserved amniotic membrane on the healing of 26 non-healing wounds (18 patients) with varying aetiologies and baseline sizes (average of 15.4 cm2 ), which had resisted the standard of care treatment for 6 to 456 weeks (average 88.8 weeks). Based on their average general responses to the application of cryo-preserved AM, we could differentiate three wound groups. The first healed group was characterised by complete healing (100% wound closure, maximum treatment period 38 weeks) and represented 62% of treated wounds. The wound area reduction of at least 50% was reached for all wounds in this group within the first 10 weeks of treatment. Exactly 19% of the studied wounds responded partially to the treatment (partially healed group), reaching less than 25% of closure in the first 10 weeks and 90% at maximum for extended treatment period (up to 78 weeks). The remaining 19% of treated wounds did not show any reaction to the AM application (unhealed defects). The three groups have different profiles of wound area reduction, which can be used as a guideline in predicting the healing prognosis of non-healing wounds treated with a cryo-preserved amniotic membrane.


Assuntos
Âmnio , Cicatrização , Humanos , Cicatrização/fisiologia
5.
Bioengineering (Basel) ; 10(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627785

RESUMO

To compare the therapeutic efficacy of cryopreserved amniotic membrane (AM) grafts and standard of care (SOC) in treating nonhealing wounds (NHW) through a prospective multicenter clinical trial, 42 patients (76% polymorbid) with 54 nonhealing wounds of various etiologies (mainly venous) and an average baseline size of 20 cm2 were included. All patients were treated for at least 6 weeks in the center before they were involved in the study. In the SOC group, 29 patients (36 wounds) were treated. If the wound healed less than 20% of the baseline size after 6 weeks, the patient was transferred to the AM group (35 patients, 43 wounds). Weekly visits included an assessment of the patient's condition, photo documentation, wound debridement, and dressing. Quality of life and the pain degree were subjectively reported by patients. After SOC, 7 wounds were healed completely, 1 defect partially, and 28 defects remained unhealed. AM application led to the complete closure of 24 wounds, partial healing occurred in 10, and 9 remained unhealed. The degree of pain and the quality of life improved significantly in all patients after AM application. This study demonstrates the effectiveness of cryopreserved AM grafts in the healing of NHW of polymorbid patients and associated pain reduction.

6.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631830

RESUMO

This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material's thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.

7.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236060

RESUMO

In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA