Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Recognit ; 28(1): 49-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26268370

RESUMO

Receptor for activated C-kinase 1 (RACK1) is an intracellular scaffolding protein involved in a multitude of signalling pathways. The cytoskeleton is fundamental for intracellular cell signalling as it forms an interconnected network of regulatory proteins. Here, spectrin is a central component as it forms the actin-spectrin network that serves as docking surfaces for cellular components. The interaction between RACK1 and components of spectrin, the single spectrin repeats R16, R17 and the double spectrin repeat R1617 from the α-spectrin chain were investigated by biosensor technology and docking analysis. RACK1 associated only weakly to R16 (KD = 1.0 ± 0.5 × 10(-6) M), about 20 times stronger to R1617 (KD = 5.3 ± 0.7 × 10(-8) M) and 100 times stronger to R17 (KD = 0.9 ± 0.3 × 10(-8) M). Docking analysis showed that while R16 alone preferentially docked with its B-helix, R17 docked through its A-helix and BC loop. The double repeat and RACK1 mainly formed two different complex conformations. R1617 docked tangentially to the N/C-terminal of RACK1 or radially along a groove on the outer surface of RACK1. These configurations could account for the slight increase in entropic and the decrease in enthalpic interactions for the R1617-RACK1 interaction, compared with the interactions of RACK1 to the two single repeats. Our results suggest a mode of interaction that allows spectrin to attach to the N/C part of RACK through the inter-helical AB and BC loops and adopt a multitude of configurations in between the two limiting configurations.


Assuntos
Aminoácidos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Espectrina/metabolismo , Aminoácidos/química , Proteínas de Ligação ao GTP/genética , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Peptídeos/química , Ligação Proteica , Conformação Proteica , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética , Termodinâmica
2.
Biochim Biophys Acta ; 1824(4): 667-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22342556

RESUMO

The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.


Assuntos
Ciclofilina A/química , HIV-1/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Domínio Catalítico , HIV-1/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Solventes/química , Ressonância de Plasmônio de Superfície
3.
BMC Struct Biol ; 11: 49, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185200

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. RESULTS: Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. CONCLUSIONS: For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.


Assuntos
Ciclofilina A/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , HIV-1/metabolismo , Humanos , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
4.
BMC Struct Biol ; 10: 31, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20920334

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined. RESULTS: Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding. CONCLUSIONS: Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data. In detail the SPR data of this interaction were compatible with a two-state binding interaction model that involves a conformational change during binding. This is in accord with the structural changes observed by NMR suggesting CypA catalyzes the prolyl cis/trans interconversion during binding to the RHFP35RIW motif of N-terminal Vpr.


Assuntos
Ciclofilina A/metabolismo , Peptidilprolil Isomerase/metabolismo , Prolina/metabolismo , Ligação Proteica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Replicação Viral/fisiologia
5.
Thyroid ; 15(10): 1131-6, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16279846

RESUMO

Protein acetylation is an important posttranslational modification regulating oncogenesis, apoptosis and cell cycle. NATH (N-acetyl transferase human) is overexpressed at the mRNA level in papillary thyroid carcinomas relative to non-neoplastic thyroid tissue. The NATH protein has recently been demonstrated to be the partner of hARD1 (human Arrest defective 1) and this complex acetylates the N-termini of proteins. ARD1 has also been implicated in the destabilization of the transcription factor HIF-1alpha (hypoxia inducible factor-1alpha). Using human thyroid papillary carcinoma biopsies and NATH- and hARD1-specific antibodies, we examined the levels of endogenous NATH and hARD1 proteins in 27 patients. We demonstrate that NATH protein level is upregulated in neoplastic versus non-neoplastic tissue in good accordance with our previous mRNA findings. In all tumors in which NATH was downregulated compared to non-neoplastic tissue, the hARD1 protein level was concomitantly reduced. SiRNA-mediated knockdown of NATH resulted in decreased levels of hARD1 protein. Taken together, these results suggest that NATH positively affects the level of hARD1 protein both in vivo and in cell cultures.


Assuntos
Acetiltransferases/biossíntese , Carcinoma Papilar/enzimologia , Proteínas de Neoplasias/biossíntese , Neoplasias da Glândula Tireoide/enzimologia , Regulação para Baixo , Células HeLa , Humanos , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA