Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 27(4): 2528-2543, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114173

RESUMO

Successful avoidance of aversive outcomes is crucial for the survival of animals. Although accumulating evidence indicates that an indirect pathway in the basal ganglia is involved in aversive behavior, the ventral pallidum (VP), which is an important component of this pathway, has so far been implicated primarily in appetitive behavior. In this study, we used single-cell recordings and bicuculline (GABAA antagonist) injections to elucidate the role of VP both in the encoding of aversive context and in active avoidance. We found 2 populations of neurons that were preferentially activated by appetitive and aversive conditioned stimuli (CSs). In addition, VP showed appetitive and aversive outcome anticipatory activities. These activity patterns indicate that VP is involved in encoding and maintaining CS-induced aversive contextual information. Furthermore, the disturbance of VP activity by bicuculline injection increased the number of error trials in aversive trials. In particular, the subjects released the response bar prematurely, showed no response at all, or failed to avoid the aversive outcome. Overall, these results suggest that VP plays a central role in controlling CS-induced negative motivation to produce avoidance behavior.


Assuntos
Aprendizagem da Esquiva/fisiologia , Prosencéfalo Basal/fisiologia , Neurônios/fisiologia , Animais , Bicuculina/farmacologia , Eletrofisiologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Macaca fascicularis , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Neurônios/efeitos dos fármacos
2.
Eur J Neurosci ; 45(9): 1186-1199, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27706860

RESUMO

The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior.


Assuntos
Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Núcleos Talâmicos/fisiologia , Percepção Visual , Animais , Haplorrinos , Masculino , Neurônios/fisiologia
3.
J Neurophysiol ; 115(3): 1556-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792884

RESUMO

The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.


Assuntos
Ondas Encefálicas , Mãos/fisiologia , Córtex Motor/fisiologia , Movimento , Desempenho Psicomotor , Animais , Potenciais Evocados , Mãos/inervação , Macaca , Masculino
4.
Eur J Neurosci ; 43(12): 1569-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27062460

RESUMO

The dorsal premotor cortex residing in the dorsolateral aspect of area 6 is a rostrocaudally elongated area that is rostral to the primary motor cortex (M1) and caudal to the prefrontal cortex. This region, which is subdivided into rostral [pre-dorsal premotor cortex (pre-PMd)] and caudal [dorsal premotor cortex proper (PMd)] components, probably plays a central role in planning and executing actions to achieve a behavioural goal. In the present study, we investigated the functional specializations of the pre-PMd, PMd, and M1, because the synthesis of the specific functions performed by each area is considered to be essential. Neurons were recorded while monkeys performed a conditional visuo-goal task designed to include separate processes for determining a behavioural goal (reaching towards a right or left potential target) on the basis of visual object instructions, specifying actions (direction of reaching) to be performed on the basis of the goal, and preparing and executing the action. Neurons in the pre-PMd and PMd retrieved and maintained behavioural goals without encoding the visual features of the visual object instructions, and subsequently specified the actions by multiplexing the goals with the locations of the targets. Furthermore, PMd and M1 neurons played a major role in representing the action during movement preparation and execution, whereas the contribution of the pre-PMd progressively decreased as the time of the actual execution of the movement approached. These findings revealed that the multiple processing stages necessary for the realization of an action to accomplish a goal were implemented in an area-specific manner across a functional gradient from the pre-PMd to M1 that included the PMd as an intermediary.


Assuntos
Objetivos , Córtex Motor/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor , Animais , Comportamento de Escolha , Feminino , Macaca , Masculino , Atividade Motora
5.
Eur J Neurosci ; 43(2): 258-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547510

RESUMO

The ventral premotor cortex (PMv), occupying the ventral aspect of area 6 in the frontal lobe, has been implicated in action planning and execution based on visual signals. Although the PMv has been characterized by cortico-cortical connections with specific subregions of the parietal and prefrontal cortical areas, a topographical input/output organization between the PMv and the basal ganglia (BG) still remains elusive. In the present study, retrograde transneuronal labelling with the rabies virus was employed to identify the origins of multisynaptic projections from the BG to the PMv. The virus was injected into the forelimb region of the PMv, identified in the ventral aspect of the genu of the arcuate sulcus, in macaque monkeys. The survival time after the virus injection was set to allow either the second- or third-order neuron labelling across two or three synapses. The second-order neurons were observed in the ventral portion (primary motor territory) and the caudodorsal portion (higher-order motor territory) of the internal segment of the globus pallidus. Subsequently, the third-order neurons were distributed in the putamen caudal to the anterior commissure, including both the primary and the higher-order motor territories, and in the ventral striatum (limbic territory). In addition, they were found in the dorsolateral portion (motor territory) and ventromedial portion (limbic territory) of the subthalamic nucleus, and in the external segment of the globus pallidus including both the limbic and motor territories. These findings indicate that the PMv receives diverse signals from the primary motor, higher-order motor and limbic territories of the BG.


Assuntos
Gânglios da Base/citologia , Córtex Motor/citologia , Neurônios/citologia , Animais , Membro Anterior/inervação , Macaca , Masculino , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Sinapses
6.
J Neurophysiol ; 113(7): 2845-58, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25717163

RESUMO

The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study aimed to characterize the functional organization of these regions during movement by investigating laterality representations in the CMAc and SMA of monkeys via an examination of neuronal activity during a button press movement with either the right or left hand. Three types of movement-related neuronal activity were observed: 1) with only the contralateral hand, 2) with only the ipsilateral hand, and 3) with either hand. Neurons in the CMAc represented contralateral and ipsilateral hand movements to the same degree, whereas neuronal representations in the SMA were biased toward contralateral hand movement. Furthermore, recording neuronal activities using a linear-array multicontact electrode with 24 contacts spaced 150 µm apart allowed us to analyze the spatial distribution of neurons exhibiting particular hand preferences at the submillimeter scale. The CMAc and SMA displayed distinct microarchitectural organizations. The contralateral, ipsilateral, and bilateral CMAc neurons were distributed homogeneously, whereas SMA neurons exhibiting identical hand preferences tended to cluster. These findings indicate that the CMAc, which is functionally organized in a less structured manner than the SMA is, controls contralateral and ipsilateral hand movements in a counterbalanced fashion, whereas the SMA, which is more structured, preferentially controls contralateral hand movements.


Assuntos
Potencial Evocado Motor/fisiologia , Lateralidade Funcional/fisiologia , Giro do Cíngulo/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Animais , Mãos/fisiologia , Macaca , Masculino
7.
J Neurosci ; 33(41): 16360-71, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107966

RESUMO

The dorsal aspect of the globus pallidus (GP) communicates with the prefrontal cortex and higher-order motor areas, indicating that it plays a role in goal-directed behavior. We examined the involvement of dorsal GP neurons in behavioral goal monitoring and maintenance, essential components of executive function. We trained two macaque monkeys to choose a reach target based on relative target position in a spatial goal task or a target shape in an object-goal task. The monkeys were trained to continue to choose a certain behavioral goal when reward volume was constant and to switch the goals when the volume began to decrease. Because the judgment for the next goal was made in the absence of visual signals, the monkeys were required to monitor and maintain the chosen goals during the reaching movement. We obtained three major findings. (1) GP neurons reflected more of the relative spatial position than the shape of the reaching target during the spatial goal task. During the object-goal task, the shape of the reaching object was represented more than the relative position. (2) The selectivity of individual neurons for the relative position was enhanced during the spatial goal task, whereas the object-shape selectivity was enhanced during the object-goal task. (3) When the monkeys switched the goals, the selectivity for either the position or shape also switched. Together, these findings suggest that the dorsal GP is involved in behavioral goal monitoring and maintenance during execution of goal-oriented actions, presumably in collaboration with the prefrontal cortex.


Assuntos
Comportamento Animal/fisiologia , Função Executiva/fisiologia , Globo Pálido/fisiologia , Objetivos , Movimento/fisiologia , Animais , Mapeamento Encefálico , Macaca , Imageamento por Ressonância Magnética , Masculino
8.
J Neurosci ; 33(34): 13639-53, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966686

RESUMO

Multiple loop circuits interconnect the basal ganglia and the frontal cortex, and each part of the cortico-basal ganglia loops plays an essential role in neuronal computational processes underlying motor behavior. To gain deeper insight into specific functions played by each component of the loops, we compared response properties of neurons in the globus pallidus (GP) with those in the dorsal premotor cortex (PMd) and the ventrolateral and dorsolateral prefrontal cortex (vlPFC and dlPFC) while monkeys performed a behavioral task designed to include separate processes for behavioral goal determination and action selection. Initially, visual signals instructed an abstract behavioral goal, and seconds later, a choice cue to select an action was presented. When the instruction cue appeared, GP neurons started to reflect visual features as early as vlPFC neurons. Subsequently, GP neurons began to reflect goals informed by the visual signals no later than neurons in the PMd, vlPFC, and dlPFC, indicating that the GP is involved in the early determination of behavioral goals. In contrast, action specification occurred later in the GP than in the cortical areas, and the GP was not as involved in the process by which a behavioral goal was transformed into an action. Furthermore, the length of time representing behavioral goal and action was shorter in the GP than in the PMd and dlPFC, indicating that the GP may play an important role in detecting individual behavioral events. These observations elucidate the involvement of the GP in goal-directed behavior.


Assuntos
Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Globo Pálido/fisiologia , Objetivos , Vias Neurais/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Sinais (Psicologia) , Feminino , Lobo Frontal/citologia , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Reconhecimento Visual de Modelos , Estimulação Luminosa , Tempo de Reação/fisiologia , Fatores de Tempo
9.
Cereb Cortex ; 23(12): 2965-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22989578

RESUMO

The medial temporal lobe (MTL) is responsible for various mnemonic functions, such as association/conjunction memory. The lateral prefrontal cortex (LPFC) also plays crucial roles in mnemonic functions and memory-based cognitive behaviors, for example, decision-making. Therefore, it is considered that the MTL and LPFC connect with each other and cooperate for the control of cognitive behaviors. However, there exist very weak, if any, direct inputs from the MTL to the LPFC. Employing retrograde transsynaptic transport of rabies virus, we investigated the organization of disynaptic bottom-up pathways connecting the MTL and the inferotemporal cortex to the LPFC in macaques. Three days after rabies injections into dorsal area 46, a large number of labeled neurons were observed in the MTL, such as the hippocampal formation (including the entorhinal cortex), the perirhinal cortex, and the parahippocampal cortex. In contrast, a majority of the labeled neurons were located in the inferotemporal cortex following rabies injections into ventral area 46 and lateral area 12. Rabies injections into lateral area 9/area 8B labeled only a small number of neurons in the MTL and the inferotemporal cortex. The present results indicate that, among the LPFC, dorsal area 46 is the main target of disynaptic inputs from the MTL.


Assuntos
Córtex Pré-Frontal/citologia , Sinapses , Lobo Temporal/citologia , Animais , Feminino , Macaca mulatta , Masculino , Vias Neurais , Técnicas de Rastreamento Neuroanatômico
10.
J Neurosci ; 32(37): 12934-49, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22973018

RESUMO

Although the lateral prefrontal cortex (lPFC) and dorsal premotor cortex (PMd) are thought to be involved in goal-directed behavior, the specific roles of each area still remain elusive. To characterize and compare neuronal activity in two sectors of the lPFC [dorsal (dlPFC) and ventral (vlPFC)] and the PMd, we designed a behavioral task for monkeys to explore the differences in their participation in four aspects of information processing: encoding of visual signals, behavioral goal retrieval, action specification, and maintenance of relevant information. We initially presented a visual object (an instruction cue) to instruct a behavioral goal (reaching to the right or left of potential targets). After a subsequent delay, a choice cue appeared at various locations on a screen, and the animals could specify an action to achieve the behavioral goal. We found that vlPFC neurons amply encoded object features of the instruction cues for behavioral goal retrieval and, subsequently, spatial locations of the choice cues for specifying the actions. By contrast, dlPFC and PMd neurons rarely encoded the object features, although they reflected the behavioral goals throughout the delay period. After the appearance of the choice cues, the PMd held information for action throughout the specification and preparation of reaching movements. Remarkably, lPFC neurons represented information for the behavioral goal continuously, even after the action specification as well as during its execution. These results indicate that area-specific representation and information processing at progressive stages of the perception-action transformation in these areas underlie goal-directed behavior.


Assuntos
Cognição/fisiologia , Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Animais , Objetivos , Intenção , Macaca , Masculino
11.
J Neurosci ; 31(29): 10648-65, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775608

RESUMO

The temporal structuring of multiple events is essential for the purposeful regulation of behavior. We investigated the role of the lateral prefrontal cortex (LPFC) in transforming external signals of multiple sensory modalities into information suitable for monitoring successive events across behavioral phases until an intended action is prompted and then initiated. We trained monkeys to receive a succession of 1 s visual, auditory, or tactile sensory signals separated by variable intervals and to then release a key as soon as the fourth signal appeared. Thus, the animals had to monitor and update information about the progress of the task upon receiving each signal preceding the key release in response to the fourth signal. We found that the initial, short-latency responses of LPFC neurons reflected primarily the sensory modality, rather than the phase or progress of the task. However, a task phase-selective response developed within 500 ms of signal reception, and information about the task phase was maintained throughout the presentation of successive cues. The task phase-selective activity was updated with the appearance of each cue until the planned action was initiated. The phase-selective activity of individual neurons reflected not merely a particular phase of the task but also multiple successive phases. Furthermore, we found combined representations of task phase and sensory modality in the activity of individual LPFC neurons. These properties suggest how information representing multiple phases of behavioral events develops in the LPFC to provide a basis for the temporal regulation of behavior.


Assuntos
Mapeamento Encefálico , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Comportamento Animal , Sinais (Psicologia) , Feminino , Macaca fascicularis , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/citologia , Desempenho Psicomotor/fisiologia , Fatores de Tempo , Tato
12.
Eur J Neurosci ; 36(10): 3365-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22882424

RESUMO

Lines of evidence indicate that both the ventrolateral prefrontal cortex (vlPFC) (areas 45/12) and dorsal premotor cortex (PMd) (rostral F2 in area 6) are crucially involved in conditional visuomotor behavior, in which it is required to determine an action based on an associated visual object. However, virtually no direct projections appear to exist between the vlPFC and PMd. In the present study, to elucidate possible multisynaptic networks linking the vlPFC to the PMd, we performed a series of neuroanatomical tract-tracing experiments in macaque monkeys. First, we identified cortical areas that send projection fibers directly to the PMd by injecting Fast Blue into the PMd. Considerable retrograde labeling occurred in the dorsal prefrontal cortex (dPFC) (areas 46d/9/8B/8Ad), dorsomedial motor cortex (dmMC) (F7 and presupplementary motor area), rostral cingulate motor area, and ventral premotor cortex (F5 and area 44), whereas the vlPFC was virtually devoid of neuronal labeling. Second, we injected the rabies virus, a retrograde transneuronal tracer, into the PMd. At 3 days after the rabies injections, second-order neurons were labeled in the vlPFC (mainly area 45), indicating that the vlPFC disynaptically projects to the PMd. Finally, to determine areas that connect the vlPFC to the PMd indirectly, we carried out an anterograde/retrograde dual-labeling experiment in single monkeys. By examining the distribution of axon terminals labeled from the vlPFC and cell bodies labeled from the PMd, we found overlapping labels in the dPFC and dmMC. These results indicate that the vlPFC outflow is directed toward the PMd in a multisynaptic fashion through the dPFC and/or dmMC.


Assuntos
Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor , Sinapses/fisiologia , Animais , Axônios/fisiologia , Mapeamento Encefálico , Feminino , Corantes Fluorescentes , Macaca , Masculino , Córtex Motor/citologia , Rede Nervosa/citologia , Córtex Pré-Frontal/citologia , Vírus da Raiva
13.
Eur J Neurosci ; 33(2): 285-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21070393

RESUMO

We examined the organization of multisynaptic projections from the basal ganglia (BG) to the dorsal premotor area in macaques. After injection of the rabies virus into the rostral sector of the caudal aspect of the dorsal premotor area (F2r) and the caudal sector of the caudal aspect of the dorsal premotor area (F2c), second-order neuron labeling occurred in the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr). Labeled GPi neurons were found in the caudoventral portion after F2c injection, and in the dorsal portion at the rostrocaudal middle level after F2r injection. In the SNr, F2c and F2r injections led to labeling in the caudal or rostral part, respectively. Subsequently, third-order neuron labeling was observed in the external segment of the globus pallidus (GPe), the subthalamic nucleus (STN), and the striatum. After F2c injection, labeled neurons were observed over a broad territory in the GPe, whereas after F2r injection, labeled neurons tended to be restricted to the rostral and dorsal portions. In the STN, F2c injection resulted in extensive labeling over the nucleus, whereas F2r injection resulted in labeling in the ventral portion only. After both F2r and F2c injections, labeled neurons in the striatum were widely observed in the striatal cell bridge region and neighboring areas, as well as in the ventral striatum. The present results revealed that the origins of multisynaptic projections to F2c and F2r in the BG are segregated in the output stations of the BG, whereas intermingling rather than segregation is evident with respect to their input station.


Assuntos
Gânglios da Base/anatomia & histologia , Lobo Frontal/anatomia & histologia , Macaca/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Animais , Lobo Frontal/fisiologia , Vias Neurais/fisiologia , Neurônios/metabolismo
14.
Neurosci Res ; 164: 10-21, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32294524

RESUMO

Cerebellar outputs originate from the dentate nucleus (DN), project to the primary motor cortex (M1) via the motor thalamus, control M1 activity, and play an essential role in coordinated movements. However, it is unclear when and how the cerebellar outputs contribute to M1 activity. To address this question, we examined the response of M1 neurons to electrical stimulation of the DN and M1 activity during performance of arm-reaching tasks. Based on response patterns to DN stimulation, M1 neurons were classified into facilitation-, suppression-, and no-response-types. During tasks, not only facilitation- and suppression-type M1 neurons, but also no response-type M1 neurons increased or decreased their firing rates in relation to arm reaching movements. However, the firing rates of facilitation- and suppression-type neurons were higher than those of no-response-type neurons during both inter-trial intervals and arm reaching movements. These results imply that cerebellar outputs contribute to both spontaneous and movement-related activity in the M1, which help to maintain muscle tones and execute coordinated movements, although other inputs also contribute to movement-related activity. Pharmacological inactivation of the DN supports this notion, in that DN inactivation reduced both spontaneous firing rates and movement-related activity in the M1.


Assuntos
Córtex Motor , Animais , Braço , Cerebelo , Haplorrinos , Movimento
15.
16.
Eur J Neurosci ; 31(8): 1402-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20384784

RESUMO

In the caudal part of the dorsal premotor cortex of macaques (area F2), both anatomical and physiological studies have identified two rostrocaudally separate sectors. The rostral sector (F2r) is located medial to the genu of the arcuate sulcus, and the caudal sector (F2c) is located lateral to the superior precentral dimple. Here we examined the sites of origin of projections from the cerebellum to F2r and F2c. We applied retrograde transsynaptic transport of a neurotropic virus, CVS-11 of rabies virus, in macaque monkeys. Three days after rabies injections into F2r or F2c, neuronal labeling was found in the deep cerebellar nuclei mainly of the contralateral hemisphere. After the F2r injection, labeled cells were distributed primarily in the caudoventral portion of the dentate nucleus, whereas cells labeled after the F2c injection were distributed in the rostrodorsal portion of the dentate nucleus, and in the interpositus and fastigial nuclei. Four days after rabies injections, Purkinje cells were densely labeled in the lateral part of the cerebellar cortex. After the F2r injection, Purkinje cell labeling was confined to Crus I and II, whereas the labeling seen after the F2c injection was located broadly from lobules III to VIII, including Crus I and II. These results have revealed that F2c receives inputs from broader areas of the cerebellum than F2r, and that distinct portions of the deep cerebellar nuclei and the cerebellar cortex send major projections to F2r and F2c, suggesting that F2c and F2r may be under specific influences of the cerebellum.


Assuntos
Cerebelo/anatomia & histologia , Lobo Frontal/anatomia & histologia , Animais , Córtex Cerebelar/anatomia & histologia , Córtex Cerebelar/citologia , Núcleos Cerebelares/anatomia & histologia , Núcleos Cerebelares/citologia , Cerebelo/citologia , Feminino , Lobo Frontal/citologia , Macaca fascicularis , Macaca mulatta , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Marcadores do Trato Nervoso , Neurônios/citologia , Vírus da Raiva
17.
J Neurosci ; 28(41): 10287-97, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18842888

RESUMO

Before preparing to initiate a forthcoming motion, we often acquire information about the future action without specifying actual motor parameters. The information for planning an action at this conceptual level can be provided with verbal commands or nonverbal signals even before the associated motor targets are visible. Under these conditions, the information signifying a virtual action plan must be transformed to information that can be used for constructing a motor plan to initiate specific movements. To determine whether the premotor cortex is involved in this process, we examined neuronal activity in the dorsal premotor cortex (PMd) of monkeys performing a behavioral task designed to isolate the behavioral stages of the acquisition of information for a future action and the construction of a motor plan. We trained the animals to receive a symbolic instruction (color and shape of an instruction cue) to determine whether to select the right or left of targets to reach, despite the physical absence of targets. Subsequently, two targets appeared on a screen at different locations. The animals then determined the correct target (left or right) based on the previous instruction and prepared to initiate a reaching movement to an actual target. The experimental design dissociated the selection of the right/left at an abstract level (action plan) from the physical motor plan. Here, we show that activity of individual PMd neurons initially reflects a virtual action plan transcending motor specifics, before these neurons contribute to a transformation process that leads to activity encoding a motor plan.


Assuntos
Mapeamento Encefálico , Condicionamento Psicológico/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Potenciais de Ação , Animais , Comportamento de Escolha , Sinais (Psicologia) , Feminino , Fixação Ocular/fisiologia , Lateralidade Funcional , Macaca , Masculino , Córtex Motor/citologia , Neurônios/fisiologia , Fatores de Tempo
18.
J Neurophysiol ; 102(6): 3280-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793880

RESUMO

Previous reports have indicated that the premotor cortex (PM) uses visual information for either direct guidance of limb movements or indirect specification of action targets at a conceptual level. We explored how visual inputs signaling these two different categories of information are processed by PM neurons. Monkeys performed a delayed reaching task after receiving two different sets of visual instructions, one directly specifying the spatial location of a motor target (a direct spatial-target cue) and the other providing abstract information about the spatial location of a motor target by indicating whether to select the right or left target at a conceptual level (a symbolic action-selection cue). By comparing visual responses of PM neurons to the two sets of visual cues, we found that the conceptual action plan indicated by the symbolic action-selection cue was represented predominantly in dorsal PM (PMd) neurons with a longer latency (150 ms), whereas both PMd and ventral PM (PMv) neurons responded with a shorter latency (90 ms) when the motor target was directly specified with the direct spatial-target cue. We also found that excited, but not inhibited, responses of PM neurons to the direct spatial-target cue were biased toward contralateral preference. In contrast, responses to the symbolic action-selection cue were either excited or inhibited without laterality preference. Taken together, these results suggest that the PM constitutes a pair of distinct circuits for visually guided motor act; one circuit, linked more strongly with PMd, carries information for retrieving action instruction associated with a symbolic cue, and the other circuit, linked with PMd and PMv, carries information for directly specifying a visuospatial position of a reach target.


Assuntos
Córtex Motor/citologia , Movimento/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Sinais (Psicologia) , Feminino , Lateralidade Funcional/fisiologia , Inibição Psicológica , Macaca fascicularis , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Fatores de Tempo
19.
Curr Opin Neurobiol ; 17(2): 234-42, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17317152

RESUMO

The dorsal and ventral premotor areas, together with the primary motor cortex, are believed to have major roles in preparing and executing limb movements. Recent studies have expanded our knowledge of the dorsal and ventral premotor areas, which occupy the lateral part of area 6 in the frontal cortex. It is becoming clear that these two premotor areas, through involvement in distinct cortical networks, take part in unique aspects of motor planning and decision making. New lines of evidence also implicate the lateral premotor areas in planning motor behavior and selecting actions.


Assuntos
Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Atividade Motora/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Animais , Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Humanos , Modelos Neurológicos , Lobo Parietal/anatomia & histologia
20.
Nat Neurosci ; 8(11): 1491-3, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16205719

RESUMO

The cerebral cortex is interconnected with two major subcortical structures: the basal ganglia and the cerebellum. How and where cerebellar circuits interact with basal ganglia circuits has been a longstanding question. Using transneuronal transport of rabies virus in macaques, we found that a disynaptic pathway links an output stage of cerebellar processing, the dentate nucleus, with an input stage of basal ganglia processing, the striatum.


Assuntos
Gânglios da Base/anatomia & histologia , Cerebelo/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Gânglios da Base/virologia , Cerebelo/metabolismo , Cerebelo/virologia , Macaca , Vias Neurais/virologia , Vírus da Raiva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA