Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cardiovasc Electrophysiol ; 27(1): 110-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459193

RESUMO

Connexin43 (Cx43) phosphorylation alters gap junction localization and function. In particular, phosphorylation at serine-368 (S368) has been suggested to alter gap junctional conductance, but previous reports have shown inconsistent results for both timing and functional effects of S368 phosphorylation. The objective of this study was to determine the functional effects of isolated S368 phosphorylation. We evaluated wild-type Cx43 (AdCx43) and mutations simulating permanent phosphorylation (Ad368E) or preventing phosphorylation (Ad368A) at S368. Function was assessed by optical mapping of electrical conduction in patterned cultures of neonatal rat ventricular myocytes, under baseline and metabolic stress (MS) conditions. Baseline conduction velocity (CV) was similar for all groups. In the AdCx43 and Ad368E groups, MS moderately decreased CV. Ad368A caused complete conduction block during MS. Triton-X solubility assessment showed no change in Cx43 location during conduction impairment. Western blot analysis showed that Cx43-S368 phosphorylation was present at baseline, and that it decreased during MS. Our data indicate that phosphorylation at S368 does not affect CV under baseline conditions, and that preventing S368 phosphorylation makes Cx43 hypersensitive to MS. These results show the critical role of S368 phosphorylation during stress conditions.


Assuntos
Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Potenciais de Ação , Animais , Animais Recém-Nascidos , Células Cultivadas , Conexina 43/genética , Mutação , Fosforilação , Ratos Sprague-Dawley , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção , Imagens com Corantes Sensíveis à Voltagem
2.
J Biol Chem ; 286(49): 42435-42445, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22020933

RESUMO

Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Apoptose , Sobrevivência Celular , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos de Inositol/química , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Fosfatos de Fosfatidilinositol/química , Fosfolipídeos/química , Estrutura Terciária de Proteína , Prótons , Sódio/química , Trocador 1 de Sódio-Hidrogênio , Ressonância de Plasmônio de Superfície , Suínos
3.
Nat Commun ; 8(1): 2077, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233994

RESUMO

Fast opening and closing of voltage-gated sodium channels are crucial for proper propagation of the action potential through excitable tissues. Unlike potassium channels, sodium channel α-subunits are believed to form functional monomers. Yet, an increasing body of literature shows inconsistency with the traditional idea of a single α-subunit functioning as a monomer. Here we demonstrate that sodium channel α-subunits not only physically interact with each other but they actually assemble, function and gate as a dimer. We identify the region involved in the dimerization and demonstrate that 14-3-3 protein mediates the coupled gating. Importantly we show conservation of this mechanism among mammalian sodium channels. Our study not only shifts conventional paradigms in regard to sodium channel assembly, structure, and function but importantly this discovery of the mechanism involved in channel dimerization and biophysical coupling could open the door to new approaches and targets to treat and/or prevent sodium channelopathies.


Assuntos
Proteínas 14-3-3/metabolismo , Canalopatias/patologia , Ativação do Canal Iônico/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Multimerização Proteica/fisiologia , Potenciais de Ação/fisiologia , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sódio/metabolismo
4.
Circ Cardiovasc Genet ; 7(2): 123-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24573164

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an arrhythmogenic disorder that has been linked to mutations in SCN5A, the gene encoding for the pore-forming α-subunit of the cardiac sodium channel. Typically, BrS mutations in SCN5A result in a reduction of sodium current with some mutations even exhibiting a dominant-negative effect on wild-type (WT) channels, thus leading to an even more prominent decrease in current amplitudes. However, there is also a category of apparently benign (atypical) BrS SCN5A mutations that in vitro demonstrates only minor biophysical defects. It is therefore not clear how these mutations produce a BrS phenotype. We hypothesized that similar to dominant-negative mutations, atypical mutations could lead to a reduction in sodium currents when coexpressed with WT to mimic the heterozygous patient genotype. METHODS AND RESULTS: WT and atypical BrS mutations were coexpressed in Human Embryonic Kidney-293 cells, showing a reduction in sodium current densities similar to typical BrS mutations. Importantly, this reduction in sodium current was also seen when the atypical mutations were expressed in rat or human cardiomyocytes. This decrease in current density was the result of reduced surface expression of both mutant and WT channels. CONCLUSIONS: Taken together, we have shown how apparently benign SCN5A BrS mutations can lead to the ECG abnormalities seen in patients with BrS through an induced defect that is only present when the mutations are coexpressed with WT channels. Our work has implications for risk management and stratification for some SCN5A-implicated BrS patients.


Assuntos
Síndrome de Brugada/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Animais , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatologia , Células Cultivadas , Eletrocardiografia , Genótipo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo
5.
J Clin Invest ; 124(3): 1057-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531551

RESUMO

Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2-dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity.


Assuntos
Apoptose , Proteínas de Transporte de Cátions/metabolismo , Túbulos Renais Proximais/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Acil Coenzima A/metabolismo , Animais , Ligação Competitiva , Proteínas de Transporte de Cátions/química , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA