Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
2.
Inorg Chem ; 63(25): 11716-11725, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38859752

RESUMO

The utilization of aluminum, an abundant and inexpensive element, for the synthesis of novel functional complexes is extremely important, but the design and control of photofunctionality are still unexplored. In this study, we focused on our previously developed dinuclear triple-stranded helicates incorporating two aluminum ions (ALPHY) to synthesize both homoleptic and heteroleptic complexes with bromine atoms at the 3-position of the pyrrole moiety in the Schiff base ligands. The brominated Schiff base ligands were reacted with AlCl3 to synthesize homoleptic complexes, while different ligands were mixed to prepare heteroleptic complexes. Single-crystal X-ray structural analysis revealed the structures of these novel complexes. We found that increasing the degree of bromination resulted in a tunable emission color, shifting progressively from 550 (yellow) to 566 nm (orange). Optical resolution of the complexes facilitated the observation of mirror-image circular dichroism and circularly polarized luminescence. Furthermore, employing ultrafast spectroscopy techniques, we have elucidated that the optical properties are governed by the interligand charge transfer (ILCT) among the three ligands. The formation of heteroleptic complexes induces the ILCT state even in nonpolar environments, thereby accelerating nonradiative decay and intersystem crossing. These findings mark significant advancements in photofunctional materials based on multinuclear complexes.

3.
Inorg Chem ; 63(14): 6296-6304, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526299

RESUMO

This study explored the development of functional dyes using aluminum, focusing on aluminum-based dinuclear triple-stranded helicates, and examined the effects of substituent variations on their structural and optical properties. Key findings revealed that the modification of methyl groups to the pyrrole positions significantly extended the conjugation system, resulting in a red shift in the absorption and emission spectra. Conversely, the modification of methyl groups at the methine positions due to steric hindrances increased the torsion angle of the ligands, leading to a blue shift in the absorption and emission spectra. A common feature across all complexes was that in the excited state, one of the three ligands underwent significant structural relaxation. This led to a pronounced Stokes shift and minimal spectra overlap with high photoluminescence behaviors. Moreover, our research extended to the optical resolution of the newly synthesized complexes by analyzing the chiroptical properties of the resulting enantiomers, including their circular dichroism and circularly polarized luminescence. These insights offer valuable contributions to the design and application of novel aluminum-based functional dyes, potentially influencing a range of fields, from materials science to optoelectronics.

4.
J Am Chem Soc ; 145(42): 23143-23151, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844138

RESUMO

High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.


Assuntos
Isquemia Encefálica , Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Animais , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Heparina/metabolismo
5.
Chemistry ; 29(55): e202301847, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37423896

RESUMO

Metal centers that can generate coordinatively unsaturated metals in accessible and stable states have been developed using synthetic polymers with sophisticated ligand and scaffold designs, which required synthetic efforts. Herein, we report a simple and direct strategy for producing polymer-supported phosphine-metal complexes, which stabilizes mono-P-ligated metals by modulating the electronic properties of the aryl pendant groups in the polymer platform. A three-fold vinylated PPh3 was copolymerized with a styrene derivative and a cross-linker to produce a porous polystyrene-phosphine hybrid monolith. Based on the Hammett substituent constants, the electronic properties of styrene derivatives were modulated and incorporated into the polystyrene backbone to stabilize the mono-P-ligated Pd complex via Pd-arene interactions. Through NMR, TEM, and comparative catalytic studies, the polystyrene-phosphine hybrid, which induces selective mono-P-ligation and moderate Pd-arene interactions, demonstrated high catalytic durability for the cross-coupling of chloroarenes under continuous-flow conditions.

6.
Biomacromolecules ; 23(3): 1232-1241, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34968049

RESUMO

Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and 6'-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures.


Assuntos
Influenza Humana , Nanoestruturas , Hemaglutininas , Humanos , Influenza Humana/tratamento farmacológico , Nanoestruturas/química , Polimerização , Polímeros/química
7.
Arerugi ; 71(5): 397-401, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35831165

RESUMO

Cutaneous mastocytosis (CM) usually appears in childhood and improves substantially before adolescence. The c-KIT mutation of D816V is present in 36% and 20% of patients with childhood-onset CM and diffuse cutaneous mastocytosis (DCM), respectively. In some cases of childhood-onset DCM, the disease can progress to systemic mastocytosis; in others, it resolves spontaneously. Thus, assessing the prognosis is difficult. Herein, we described a case of DCM in an 11-month-old, male patient without a c-KIT mutation. The patient presented with dark brown macules and sporadic erythema topped by bullous lesions. A skin biopsy of the macule on the abdomen revealed accumulation of mast cells which were round to oval-shaped with amphophilic cytoplasm within the upper dermis. The patient had received H1 inhibitor until age 3 years and continued to experience blisters on the trunk. However, no severe symptoms, such as anaphylaxis, occurred. Included in this manuscript is a review of previous reports of childhood-onset DCM in Japan and cases specifically seen at our dermatology clinic.


Assuntos
Mastocitose Cutânea , Proteínas Proto-Oncogênicas c-kit , Adolescente , Pré-Escolar , Humanos , Lactente , Masculino , Mastócitos , Mastocitose Cutânea/diagnóstico , Mastocitose Cutânea/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Pele/patologia
8.
Angew Chem Int Ed Engl ; 61(30): e202206456, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35567515

RESUMO

Synthetic polymer nanoparticles (NPs) that recognize and neutralize target biomacromolecules are of considerable interest as "plastic antibodies", synthetic mimics of antibodies. However, monomer sequences in the synthetic NPs are heterogeneous. The heterogeneity limits the target specificity and safety of the NPs. Herein, we report the synthesis of NPs with uniform monomer sequences for recognition and neutralization of target peptides. A multifunctional oligomer with a precise monomer sequence that recognizes the target peptide was prepared via cycles of reversible addition-fragmentation chain transfer (RAFT) polymerization and flash chromatography. The oligomer or blend of oligomers was used as a chain transfer agent and introduced into poly(N-isopropyl acrylamide) hydrogel NPs by radical polymerization. Evaluation of the interaction with the peptides revealed that multiple oligomers in NPs cooperatively recognized the sequence of the target peptide and neutralized its toxicity. Effect of sequence, combination, density and molecular weight distribution of precision oligomers on the affinity to the peptides was also investigated.


Assuntos
Nanopartículas , Polímeros , Hidrogéis , Nanopartículas/química , Peptídeos/química , Polimerização , Polímeros/química
9.
Anal Chem ; 93(50): 16796-16803, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34870976

RESUMO

Phototrophs assimilate CO2 into organic compounds that accumulate in storage organelles. Elucidation of the carbon dynamics of storage organelles could enhance the production efficiency of valuable compounds and facilitate the screening of strains with high photosynthetic activity. To comprehensively elucidate the carbon dynamics of these organelles, the intraorganellar distribution of the carbon atoms that accumulate at specific time periods should be probed. In this study, the biosynthesis of polysaccharides in storage organelles was spatiotemporally probed via stimulated Raman scattering (SRS) microscopy using a stable isotope (13C) as the tracking probe. Paramylon granules (a storage organelle of ß-1,3-glucan) accumulated in a unicellular photosynthetic alga, Euglena gracilis, were investigated as a model organelle. The carbon source of the culture medium was switched from NaH12CO3 to NaH13CO3 during the production of the paramylon granules; this resulted in the distribution of the 12C and 13C constituents in the granules, so that the biosynthetic process could be tracked. Taking advantage of high-resolution SRS imaging and label switching, the localization of the 12C and 13C constituents inside a single paramylon granule could be visualized in three dimensions, thus revealing the growth process of paramylon granules. We propose that this method can be used for comprehensive elucidation of the dynamic activities of storage organelles.


Assuntos
Euglena gracilis , Microscopia , Marcação por Isótopo , Organelas , Polissacarídeos
10.
Biochem Biophys Res Commun ; 561: 1-6, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004514

RESUMO

Synthetic polymers prepared using several functional monomers have attracted attention as cost-effective protein affinity reagents and alternative to antibodies. We previously reported the synthesis of poly NIPAm-based nanoparticles (NPs) using several functional monomers that can capture target molecules. In this study, we designed NPs for capturing glucose and inhibiting intestinal absorption in living mice. For capturing glucose, we focused on the Maillard reaction between primary amines and aldehyde residues. We hypothesized that the primary amine-containing NPs can capture the open-chain structure of glucose via the Maillard reaction and inhibit intestinal absorption. NPs were prepared by the precipitation polymerization of NIPAm, N-tert-butylacrylamide (TBAm), trifluoroacetate-protected N-(3-aminopropyl)methacrylamide (T-APM), and N,N'-methylenebisacrylamide. Then, T-APM in NPs was deprotected by NH3 (aq). The amount of glucose captured by NPs depended on the percentage of TBAm and APM in vitro. After 24 h, only 2% of orally administered NPs remained in the body after administration, suggesting that many NPs were excreted without being absorbed. The prepared NPs significantly inhibited an increase in blood glucose concentration after the oral administration of glucose and NPs, indicating that NPs capture glucose and inhibit intestinal absorption. These results show the potential of using synthetic polymer nanoparticles for inhibiting postprandial hyperglycemia.


Assuntos
Acrilamidas/química , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/química , Administração Oral , Animais , Glucose/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
11.
Biomacromolecules ; 22(7): 3119-3127, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34152744

RESUMO

Molecular mobility is important for interactions of biofunctional polymers with target molecules. Monomer structures for synthetic biofunctional polymers are usually selected based on their compatibility with polymerization systems, whereas the influence of monomer structures on the interaction with target molecules is hardly considered. In this report, we evaluate the correlation between the monomer structures of glycopolymers and their interactions with concanavalin A (ConA) with respect to the molecular mobility. Two types of glycopolymers bearing mannose are synthesized with acrylamide or acrylate monomers. Despite the similar structures, except for amide or ester bonds in the side chains, the acrylate-type glycopolymers exhibit stronger interaction with ConA both in the isothermal titration calorimetry measurement and in a hemagglutination inhibition assay. Characterization of the acrylate-type glycopolymers suggests that the higher binding constant arises from the higher molecular mobility of mannose units, which results from the rotational freedom of ester bonds in their side chains.


Assuntos
Polímeros , Concanavalina A , Ligantes , Substâncias Macromoleculares , Polimerização
12.
J Am Chem Soc ; 142(41): 17318-17322, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32981318

RESUMO

Thermoelectric conversion of low temperature, delocalized, and abundant thermal sources is crucial for the development of the Internet of Things (IoT) and/or a carbon-free society. Thermocells are of great interest in thermoelectric conversion of low-temperature heat due to the low cost and flexibility of components. However, significant improvement of the conversion efficiency is required for the practical use of the cells. Here, we report thermo-electrochemical cells driven by volume phase transition (VPT) of hydrogel nanoparticles (NPs). Entropically driven VPT of poly(N-isopropylacrylamide) NPs containing carboxylic acids and amines generates a pH gradient of up to 0.049 and -0.053 pH K-1, respectively, around physiological temperature. The pH gradient triggers the proton-coupled electron transfer (PCET) reactions of quinhydrone on the electrodes, resulting in the highly efficient thermoelectric conversion with a Seebeck coefficient (Se) of -6.7 and +6.1 mV K-1. Thermocells driven by phase transition of hydrogels provide a nontoxic, flexible, and inexpensive charger that harvests carbon-free energy from abundant energy sources such as solar, body and waste heat.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Nanopartículas/química , Aminas/química , Benzoquinonas/química , Ácidos Carboxílicos/química , Fontes de Energia Elétrica , Técnicas Eletroquímicas , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Oxirredução , Transição de Fase , Temperatura de Transição
13.
Angew Chem Int Ed Engl ; 59(2): 679-683, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31691476

RESUMO

Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences.


Assuntos
Peptídeos/química , Humanos , Ligantes , Polimerização
14.
Anal Chem ; 91(15): 9631-9639, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282650

RESUMO

Time-course analysis of single cells is important to characterize heterogeneous activities of individual cells such as the metabolic response to their environment. Single-cell isolation is an essential step prior to time-course analysis of individual cells by collecting, culturing, and identifying multiple single-cell targets. Although single-cell isolation has been performed by various methods previously, a glass microfluidic device with semiclosed microchannels dramatically improved this process with its simple operation and easy transfer for time-course analysis of identified single cells. This study demonstrates isolating single cells of the highly motile microalgae, Euglena gracilis, by semiclosed microchannels with liquid flow only. The isolated single cells were identified in isolating channels and continuously cultured to track, by Raman microscopy, for the formation of subcellular granules composed of polysaccharide paramylon, a unique metabolite of E. gracilis, generated through photosynthesis. Through low-temperature glass bonding, a thin glass interface was incorporated to the microfluidic device. Thus, the device could perform the direct measurements of cultured single cells at high magnification by Raman microscopy with low background noise. In this study, the first demonstration of sequential monitoring of paramylon biogenesis in a single identified E. gracilis cell is shown.


Assuntos
Euglena gracilis/metabolismo , Glucanos/biossíntese , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Vidro , Glucanos/química
15.
Bioconjug Chem ; 30(4): 1192-1198, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30860815

RESUMO

The precise design of synthetic polymer ligands using controlled polymerization techniques provides an advantage for the field of nanoscience. We report the topological design of glyco-ligands based on synthetic polymers for targeting hemagglutinin (HA, lectin on the influenza virus). To achieve precise arrangement of the glycounits toward the sugar-binding pockets of HA, triarm star glycopolymers were synthesized. The interaction of the star glycopolymers with HA was found to depend on the length of the polymer arms and was maximized when the hydrodynamic diameter of the star glycopolymer was comparable to the distance between the sugar-binding pockets of HA. Following the formula of multivalent interaction, the number of binding sites in the interaction of the glycopolymers with HA was estimated as 1.8-2.7. Considering one HA molecule has three sugar-binding pockets, these values were reasonable. The binding mode of synthetic glycopolymer-ligands toward lectins could be tuned using controlled radical polymerization techniques.


Assuntos
Vírus da Influenza A/metabolismo , Polímeros/química , Química Click , Hemaglutininas Virais/metabolismo , Ligantes , Ligação Proteica
16.
Biomacromolecules ; 20(7): 2763-2769, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199883

RESUMO

Synthetic glyco-ligands are promising candidates for effective nanomedicines against pathogens. Glycopolymers bearing sialyl-oligosaccharides interact with hemagglutinin present on the surface of influenza viruses. In designing new glycopolymers that further enhance the interaction with viruses, both static and dynamic properties of the glycopolymers should be considered. In this report, we evaluated the correlation between dynamic properties of glycopolymers and their interaction with the influenza virus. Glycopolymers with pendant sialyllactoses and various linker structures were synthesized, and their molecular mobility was determined by proton spin-spin relaxation time measurements. The molecular mobility of the glycounits increased as the length of the linker structures increased. Interestingly, glycopolymers with the medium-length linker structure exhibited the strongest interaction with the influenza virus, suggesting that optimal molecular mobility is required for maximizing multivalent interactions with the target.


Assuntos
Influenza Humana/tratamento farmacológico , Lactose/análogos & derivados , Orthomyxoviridae/efeitos dos fármacos , Polímeros/farmacologia , Ácidos Siálicos/farmacologia , Humanos , Influenza Humana/virologia , Lactose/química , Lactose/farmacologia , Ligantes , Nanomedicina , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Orthomyxoviridae/patogenicidade , Polímeros/síntese química , Polímeros/química , Polissacarídeos/síntese química , Polissacarídeos/química , Ácidos Siálicos/química
17.
Biomacromolecules ; 20(4): 1644-1654, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30848887

RESUMO

Synthetic polymers are of interest as stable and cost-effective biomolecule-affinity reagents, since these polymers interact with target biomolecules both in vitro and in the bloodstream. However, little has been reported about orally administered polymers capable of capturing a target molecule and inhibiting its intestinal absorption. Here, we describe the design of synthetic polymer nanoparticles (NPs) specifically capturing indole, a major factor exacerbating chronic kidney disease, in the intestine. N-isopropylacrylamide-based NPs were prepared with various hydrophobic monomers. The amounts of indole captured by NPs depended on the structures and feed ratios of the hydrophobic monomers and the polymer density but not on the particle size. The combination of hydrophobic and quadrupole interaction was effective to enhance the affinity and specificity of NPs for indole. The optimized NPs specifically inhibited intestinal absorption of orally administered indole in mice. These results showed the potential of synthetic polymer NPs for inhibiting the intestinal absorption of a target molecule.


Assuntos
Indóis/química , Nanopartículas/química , Células CACO-2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/toxicidade , Absorção Intestinal , Tamanho da Partícula
18.
Biomacromolecules ; 20(10): 3648-3657, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31518109

RESUMO

The affinity of a synthetic polymer nanoparticle (NP) to a target biomacromolecule is determined by the association and dissociation rate constants (kon, koff) of the interaction. The individual rates and their sensitivity to local environmental influences are important factors for the on-demand capture and release a target biomacromolecule. Positively charged NPs for small interfering RNA (siRNA) delivery is a case in point. The knockdown efficacy of siRNA can be strongly influenced by the binding kinetics to the NP. Here, we show that kon and koff of siRNA to NPs can be individually engineered by tuning the chemical structure and composition of the NP. N-Isopropylacrylamide-based NPs functionalized with hydrophobic and amine monomers were used. koff decreased by increasing the amount of amine groups in the NP, whereas kon did not change. Importantly, NPs showing a low koff at pH 5.5 together with a high koff at pH 7.4 showed high knockdown efficiency when NP/siRNA complexes were packaged in lipid nanoparticles. These results provide direct evidence for the premise that the efficacy of an siRNA delivery vector is linked with the strong affinity to the siRNA in the endosome and low affinity in the cytoplasm.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , RNA Interferente Pequeno/metabolismo , Acrilamidas/química , Animais , Linhagem Celular Tumoral , Citoplasma/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes/métodos , Camundongos , RNA Interferente Pequeno/genética , Polímeros Responsivos a Estímulos/química
19.
Faraday Discuss ; 219(0): 154-167, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31313794

RESUMO

Porous glycopolymers, "glycomonoliths", were prepared by radical polymerization based on polymerization-induced phase separation with an acrylamide derivative of α-mannose, acrylamide and cross-linker in order to investigate protein adsorption and separation. The porous structure was induced by a porogenic alcohol. The pore diameter and surface area were controlled by the type of alcohol. The protein adsorption was measured in both batch and continuous flow systems. The glycomonoliths showed specific interaction with the sugar recognition protein of concanavalin A, and non-specific interaction to other proteins was negligible. The amount of protein adsorption to the materials was determined by the sugar density and the composition of the glycomonoliths. Fundamental knowledge regarding the glycomonoliths for protein separation was obtained.


Assuntos
Acrilamida/química , Concanavalina A/isolamento & purificação , Glicoconjugados/química , Manose/análogos & derivados , Membranas Artificiais , Acrilamida/síntese química , Adsorção , Concanavalina A/análise , Glicoconjugados/síntese química , Manose/síntese química , Transição de Fase , Polimerização , Porosidade
20.
Langmuir ; 34(29): 8591-8598, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29957990

RESUMO

We report the self-assembly of a double hydrophilic block glycopolymer (DHBG) via hydrogen bonding and coordinate bonding. This DHBG, composed of poly(ethylene)glycol (PEG) and glycopolymer, self-assembled into a well-defined structure. The DHBG was prepared through the controlled radical polymerization of trimethylsilyl-protected propargyl methacrylate using a PEG-based reversible addition-fragmentation chain transfer reagent, followed by sugar conjugation using click chemistry. The DHBG self-assembly capability was investigated by transmission electron microscopy and dynamic light scattering. Interestingly, the DHBG self-assembled into a spherical structure in aqueous solution. Hydrogen bonding and coordinate bonding with Ca2+ were identified as the driving forces for self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA